簡易檢索 / 詳目顯示

研究生: 阮氏垂
Nguyen, Thi-Thuy
論文名稱: 銫原子系統中的多光子效應
Multi-photon processes in the atomic system of cesium
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 118
中文關鍵詞: 多光子系統電磁誘導透明光泵浦效應四波混頻修飾態圖像
外文關鍵詞: Multi-Photon system, electromagnetically induced transparency, , optical pumping effect, four-wave mixing, dressed state picture
相關次數: 點閱:61下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多光子系統中原子-光相互作用帶來了非常有趣的現象,由此發展成為研究原子結構的基本特性、非線性光學的產生和量子光學操縱的技術,在未來量子信息世界中具有潛在的應用。其中,所謂的電磁誘導透明(Electromagnetically induced transparency, EIT)的量子干涉已為上述應用提供關鍵技術的基石。在本論文中,我們關注具有兩個或三個光子源的多能級系統中,光與原子相互作用光譜的基本性質。本論文的第一項工作研究了銫原子中梯型電磁誘導透明的極化依賴性,在實驗中,兩個外加場的偏振態以不同的相對角度對齊,用以觀測獲得光譜的相對應變化,結果說明了施加外場的偏振所導致誘導透明的相對強度比發生顯著變化,實驗結果顯示因為兩個外加場的偏振從平行變為垂直,其相對應的峰高比(以44'4峰高為歸一化)得到I_(45'4”/44'4")≈2和 I_(44'3"/44'4)≈7.4 。在考慮到光泵浦效應、雙光子躍遷概率、相位飄移率、拉比頻率隨偏振變化以及速度貢獻的變因時,數值模擬證實了實驗結果並得到了很好的解釋。繼續的工作是基於第一個模擬實驗的擴展,其中以三個外加光場應用於四階原子能級,形成Ξ-V態的四波混頻(Four wave mixing, FWM)配置。我們使用密度矩陣方法來執行理論模擬,用以描述該系統的相互作用和產成四波混頻信號的特徵。在弱探測場近似中的三光子共振條件和修飾態圖像下共同建立了一組方程,可用於解釋產生四波混頻信號的基本特性,例如以不同雷射掃描方案之間的差異、估計共振原子能譜的位置、峰形和強度。當兩個外加場的拉比頻率接近相等時,可以獲得最佳的四波混頻信號,在計算中還觀測到由偏離共振所引起四波混頻訊號的增強。為了清楚起見,進一步討論了熱蒸汽中原子速度分佈的平均貢獻和相鄰超精細態間的躍遷,其效果是信號被抑制或是產生可忽略不計的貢獻。

    Atom-light interactions in multi-photon system bring about enormously interesting phenomena, which in turn develop into techniques for studying fundamental properties of the atomic structure, the generation of nonlinear optics, and optical-quantum manipulation for potential applications in the future quantum information world. Among them, the quantum interference of the so-called electromagnetically induced transparency (EIT) has become a key technique that paves the way for the above applications. In this dissertation, we focus on the fundamental properties of the spectra of light-atom interactions in a multiple-level system with two- and three-photon sources. Our first work studies the polarization dependence of the ladder-type EIT in the Cs atom. In this experiment, the polarization plane of the two applied fields is aligned at different relative angles to observe the corresponding change in the obtained spectra. The results reveal that the polarization of the applied fields causes a prominent change in relative intensity ratios. We observe the peak height ratio (normalized to 44'4" peak height) of I_(45'4”/44'4")≈2 and I_(44'3"/44'4)≈7.4 as the two polarization change from parallel to perpendicular. The experimental results are confirmed by the simulation and well explained when taking into account the optical pumping effect, two-photon transition probability, dephasing rate, the change in Rabi frequency as polarization change as well as the velocity contribution. The consecutive work is based on the extension of the first one where three optical fields are applied to a four-level atom, forming a Ξ−V four-wave mixing (FWM) configuration. We perform a theoretical model using the density matrix approach to describe the interaction of this system and the characteristics of the generated FWM signal. The three-photon resonance condition and the dressed state picture in the weak probe field approximation together establish a set of equations that is useful in explaining most of the properties of the generated FWM signal, such as the differences between laser scanning schemes, estimation of resonance positions, peak shape and peak intensity for the stationary atoms. The optimal FWM signal is obtained when the two applied Rabi frequencies are closely equal. A detuning-caused enhancement of FWM is also observed in the calculation. The discussion of FWM in thermal vapor with velocity averaging and neighboring hyperfine transition are included for clarity although they either suppress the signal or create negligible contributions.

    摘要 i Abstract ii Acknowledgments iv Contents vi List of Figures ix List of Tables xv List of Symbols and Abbreviations xvi Chapter 1 Introduction 1 1.1 Overview of light-matter interaction properties and applications 1 1.2 The key technique-EIT 2 1.2.1 Research motivations. 2 1.2.2 EIT definition and explanations 3 1.3 Overview of dissertation 6 Chapter 2 Theoretical description of light-atom interaction 9 2.1 Two-level atom in classical point of view 9 2.1.1 The classical model of driven damped oscillator 9 2.1.2 Light-atom interaction in relation to classical model of a driven damped oscillator 10 2.2 Two-level atom in quantum mechanics 15 2.2.1 The equivalent transformation between representations (pictures) 16 2.2.2 Density matrix approach 18 2.2.3 Time development of density operator and the Optical Bloch equation 21 2.2.4 Doppler effect on two-level system 32 2.3 Three-level atom and EIT 34 2.3.1 Density matrix approach and optical Bloch equations for EIT 35 2.3.2 Basic EIT characteristics as a function of parameters 40 2.3.3 Doppler effect on EIT 43 2.3.4 Optical pumping effect 48 2.3.5 Summary of basics EIT in the simple three-level system 51 Chapter 3 Observation on polarization dependence of Electromagnetically induced transparency in 133Cs 6S1/2-6P3/2-11S1/2 52 3.1 Introduction and Motivation 52 3.2 Experimental setup 53 3.2.1 Atomic energy configuration 53 3.2.2 Experimental setup 54 3.3 Theoretical Simulation 56 3.3.1 Estimation of relative peak position 56 3.3.2 Rabi frequency and transition probability calculation 57 3.3.3 Light polarization, two-photon transition probability, and optical pumping effect on EIT 58 3.4 Results and discussion 62 Chapter 4 Four-wave mixing involving Ξ−V system 67 4.1 Introduction and Motivation 67 4.2 Theoretical model of EIT-based FWM in Ξ –V configuration. 68 4.2.1 OBE in a four-level system 68 4.2.2 Dressed state picture in the Ξ -V type FWM 73 4.3 Results and discussion 75 4.3.1 FWM signal in different laser scanning schemes 75 4.3.2 Rabi frequency dependence 79 4.3.3 Frequency detuning dependence 82 4.3.4 Doppler effect on FWM signal 84 4.4 Summary and suggested experimental setup 87 Chapter 5 Conclusion 90 References 92 Appendix A 98 Derivation of the relaxation term in optical Bloch equation 98 Appendix B 102 Simulation program in Wolfram Mathematica 102 B1 C-J coefficient, Rabi frequency and optical pumping calculations 102 B2 EIT calculations 113 B3 FWM calculations 117

    1. Y. B. Band, Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers (Wiley, West Sussex, England, 2006).
    2. J. E. Field, K. H. Hahn, and S. E. Harris, "Observation of electromagnetically induced transparency in collisionally broadened lead vapor," Phys. Rev. Lett. 67(22), 3062-3065 (1991).
    3. K. J. Boller, A. Imamoğlu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66(20), 2593-2596 (1991).
    4. E. Arimondo, "V Coherent Population Trapping in Laser Spectroscopy," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), pp. 257-354.
    5. K. A. Barantsev, S. V. Bozhokin, A. S. Kuraptsev, A. N. Litvinov, and I. M. Sokolov, "Coherent population trapping in optically thin 133Cs atomic vapor in a finite-size cell," J. Opt. Soc. Am. B 38(5), 1613-1624 (2021).
    6. K. Bergmann, H. Theuer, and B. W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70(3), 1003-1025 (1998).
    7. B. Lounis and C. Cohen-Tannoudji, "Coherent population trapping and Fano profiles," J. Phys. II France 2(4), 579-592 (1992).
    8. S. E. Harris, "Lasers without inversion: Interference of lifetime-broadened resonances," Phys. Rev. Lett. 62(9), 1033-1036 (1989).
    9. D. Braunstein, G. A. Koganov, E. Smolik, Y. Biton, and R. Shuker, "Highly non-resonant lasing without inversion gain in a ladder scheme," Journal of Physics B: Atomic, Molecular and Optical Physics 53(21), 215403 (2020).
    10. M. O. Scully, S.-Y. Zhu, and A. Gavrielides, "Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing," Phys. Rev. Lett. 62(24), 2813-2816 (1989).
    11. O. Kocharovskaya and P. Mandel, "Amplification without inversion: The double-Λ scheme," Phys. Rev. A 42(1), 523-535 (1990).
    12. S. E. Harris and J. J. Macklin, "Lasers without inversion: Single-atom transient response," Phys. Rev. A 40(7), 4135-4137 (1989).
    13. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397(6720), 594-598 (1999).
    14. R. Liu, T. Liu, Y. Wang, Y. Li, and B. Gai, "Slowing down the speed of light using an electromagnetically-induced-transparency mechanism in a modified reservoir," Phys. Rev. A 96(5), 053823 (2017).
    15. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426(6967), 638-641 (2003).
    16. O. Katz and O. Firstenberg, "Light storage for one second in room-temperature alkali vapor," Nat. Commun. 9(1), 2074 (2018).
    17. J. Fan, Y. He, Y. Jiao, L. Hao, J. Zhao, and S. Jia, "Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell," Chin. Phys. B 30(3), 034207 (2021).
    18. H. S. Moon and T. Jeong, "Three-photon electromagnetically induced absorption in a ladder-type atomic system," Phys. Rev. A 89(3), 033822 (2014).
    19. C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, "Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour," J. Mod. Opt. 49(14-15), 2485-2499 (2002).
    20. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled Images from Four-Wave Mixing," Science 321(5888), 544-547 (2008).
    21. E. Brekke, J. O. Day, and T. G. Walker, "Four-wave mixing in ultracold atoms using intermediate Rydberg states," Phys. Rev. A 78(6), 063830 (2008).
    22. C. Y. Cheng, Z. Y. Liu, P. S. Hu, T. N. Wang, C. Y. Chien, J. K. Lin, J. Y. Juo, J. S. Shiu, I. A. Yu, Y. C. Chen, and Y. F. Chen, "Efficient frequency conversion based on resonant four-wave mixing," Opt. Lett. 46(3), 681-684 (2021).
    23. M. M. Ćurčić, T. Khalifa, B. Zlatković, I. S. Radojičić, A. J. Krmpot, D. Arsenović, B. M. Jelenković, and M. Gharavipour, "Four-wave mixing in potassium vapor with an off-resonant double-Λ system," Phys. Rev. A 97(6), 063851 (2018).
    24. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, "Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves," Phys. Rev. Lett. 88(14), 143902 (2002).
    25. S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64(10), 1107-1110 (1990).
    26. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, "Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence," Phys. Rev. Lett. 77(21), 4326-4329 (1996).
    27. A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, "Four-wave mixing involving Rydberg states in thermal vapor," Phys. Rev. A 85(6), 063821 (2012).
    28. H. R. Noh and H. Seb Moon, "Four-wave mixing in a ladder configuration of warm (87)Rb atoms: a theoretical study," Opt. Express 29(5), 6495-6508 (2021).
    29. M. Parniak and W. Wasilewski, "Interference and nonlinear properties of four-wave-mixing resonances in thermal vapor: Analytical results and experimental verification," Phys. Rev. A 91(2), 023418 (2015).
    30. H. Kang, G. Hernandez, and Y. Zhu, "Slow-Light Six-Wave Mixing at Low Light Intensities," Phys. Rev. Lett. 93(7), 073601 (2004).
    31. Z. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L.-A. Wu, and P. Fu, "Generalized n-Photon Resonant 2n-Wave Mixing in an (n+1)-Level System with Phase-Conjugate Geometry," Phys. Rev. Lett. 97(19), 193904 (2006).
    32. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, "Low-noise amplification of a continuous-variable quantum state," Phys. Rev. Lett. 103(1), 010501 (2009).
    33. C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, "Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell," Nat. Commun. 7(1), 12783 (2016).
    34. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414(6862), 413-418 (2001).
    35. C. Li, Z. Jiang, Y. Zhang, Z. Zhang, F. Wen, H. Chen, Y. Zhang, and M. Xiao, "Controlled Correlation and Squeezing in Pr3+ :Y2SiO5 to Yield Correlated Light Beams," Phys. Rev. Appl. 7(1), 014023 (2017).
    36. S. Liu, Y. Lou, and J. Jing, "Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier," Phys. Rev. Lett. 123(11), 113602 (2019).
    37. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, "Strong relative intensity squeezing by four-wave mixing in rubidium vapor," Opt. Lett. 32(2), 178-180 (2007).
    38. Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, "Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor," Phys. Rev. Lett. 113(2), 023602 (2014).
    39. C. Li, Y. Zhang, Z. Nie, H. Zheng, C. Zuo, Y. Du, J. Song, K. Lu, and C. Gan, "Controlled multi-wave mixing via interacting dark states in a five-level system," Opt. Commun. 283(14), 2918-2928 (2010).
    40. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, "Interacting multiwave mixing in a five-level atomic system," Phys. Rev. A 77(6), 063829 (2008).
    41. S. E. Harris, "Lasers without inversion: Interference of lifetime-broadened resonances," Physical Review Letters 62(9), 1033-1036 (1989).
    42. L. Zhang, S. Bao, H. Zhang, G. Raithel, J. Zhao, L. Xiao, and S. Jia, "Interplay between optical pumping and Rydberg EIT in magnetic fields," Opt. Express 26(23), 29931-29944 (2018).
    43. B.-D. Yang, J. Gao, Q.-B. Liang, J. Wang, T.-C. Zhang, and J.-M. Wang, "Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell," Chin. Phys. B 20(4), 044202 (2011).
    44. K. Yadav and A. Wasan, "Polarization dependence of the optical properties in a Ξ system with an external magnetic field," Eur. Phys. J. D 73(4), 72 (2019).
    45. H. S. Moon and H.-R. Noh, " Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms," Phys. Rev. A 84(3), 033821 (2011).
    46. H. S. Moon, L. Lee, and J. B. Kim, "Double resonance optical pumping effects in electromagnetically induced transparency," Opt. Express 16(16), 12163-12170 (2008).
    47. H. S. Moon, L. Lee, and J. B. Kim, "Double-resonance optical pumping of Rb atoms," J. Opt. Soc. Am. B 24(9), 2157-2164 (2007).
    48. D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62(5), 053802 (2000).
    49. Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, "Ladder-type electromagnetically induced transparency with optical pumping effect," Phys. Rev. A 87(3), 033402 (2013).
    50. U. D. Rapol and V. Natarajan, "Precise measurement of hyperfine intervals using avoided crossing of dressed states," Europhysics Letters (EPL) 60(2), 195-200 (2002).
    51. Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, "Determination of the Cesium 11s 2S1/2 Hyperfine Magnetic Coupling Constant Using Electromagnetically Induced Transparency," J. Phys. Soc. Jpn. 81(12), 124302 (2012).
    52. M. Stähler, S. Knappe, C. Affolderbach, W. Kemp, and R. Wynands, "Picotesla magnetometry with coherent dark states," Europhysics Letters (EPL) 54(3), 323-328 (2001).
    53. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86(5), 783-786 (2001).
    54. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409(6819), 490-493 (2001).
    55. Y. Wu and X. Yang, "Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis," Phys. Rev. A 71(5), 053806 (2005).
    56. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77(2), 633-673 (2005).
    57. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, " Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems," Phys. Rev. A 52(3), 2302-2311 (1995).
    58. S. Khan, V. Bharti, and V. Natarajan, "Role of dressed-state interference in electromagnetically induced transparency," Phys. Lett. A 380(48), 4100-4104 (2016).
    59. Y.-q. Li and M. Xiao, "Observation of quantum interference between dressed states in an electromagnetically induced transparency," Phys. Rev. A 51(6), 4959-4962 (1995).
    60. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, "Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency," Phys. Rev. Lett. 107(16), 163604 (2011).
    61. S. H. Autler and C. H. Townes, "Stark Effect in Rapidly Varying Fields," Phys. Rev. 100(2), 703-722 (1955).
    62. G. Z. Zhang, M. Katsuragawa, K. Hakuta, R. I. Thompson, and B. P. Stoicheff, "Sum-frequency generation using strong-field coupling and induced transparency in atomic hydrogen," Phys. Rev. A 52(2), 1584-1593 (1995).
    63. S. M. Iftiquar, G. R. Karve, and V. Natarajan, "Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to Doppler averaging," Phys. Rev. A 77(6), 063807 (2008).
    64. C. J. Foot, Atomic Physics, 1st ed., Oxford Master Series in Physics (OUP Oxford, USA, 2005).
    65. M. Fox, Quantum Optics: An Introduction (OUP Oxford, New York, USA, 2006).
    66. J. D. Jackson, Classical electrodynamics, (American Association of Physics Teachers, 1999).
    67. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
    68. D. J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press, 2017).
    69. N. Zettili, Quantum Mechanics: Concepts and Applications (Wiley, Jacksonville, USA, 2009).
    70. U. Fano, "Description of States in Quantum Mechanics by Density Matrix and Operator Techniques," Rev. Mod. Phys. 29(1), 74-93 (1957).
    71. K. Blum, "General Density Matrix Theory," in Density Matrix Theory and Applications (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 35-60.
    72. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
    73. G. Zhang, S. Hu, Q. Tao, Y. Liu, S. Li, and Z. Ren, "Influence of laser propagating direction on electromagnetic induced transparency," Optik 158(1275-1282 (2018).
    74. Z.-S. He, J.-Y. Su, H.-R. Chen, W.-F. Chen, M.-H. Sie, J.-Y. Ye, and C.-C. Tsai, "Low-light-level ladder-type electromagnetically induced transparency and two-photon absorption," J. Opt. Soc. Am. B 31(10), 2485-2490 (2014).
    75. P. M. Farrell and W. R. MacGillivray, "On the consistency of Rabi frequency calculations," J. Phys. A: Math. Gen. 28(1), 209-221 (1995).
    76. I. I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd ed. (Springer, Berlin, Germany, 1992), Vol. 12.
    77. B.-D. Yang, J. Gao, Q.-B. Liang, J. Wang, T.-C. Zhang, and J.-M. Wang, "Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell," Chin. Phys. B 20(4)(2011).
    78. S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, "Polarization spectra of Zeeman sublevels in Rydberg electromagnetically induced transparency," Phys. Rev. A 94(4)(2016).
    79. H. Cheng, H. M. Wang, S. S. Zhang, P. P. Xin, J. Luo, and H. P. Liu, "High resolution electromagnetically induced transparency spectroscopy of Rydberg 87Rb atom in a magnetic field," Opt. Express 25(26), 33575-33587 (2017).
    80. D. DiBerardino, C. E. Tanner, and A. Sieradzan, " Lifetime measurements of cesium 5d2 D5/2,3/2 and 11s2 S1/2 states using pulsed-laser excitation," Phys. Rev. A 57(6), 4204-4211 (1998).
    81. T.-T. Nguyen, "Study the Polarization Dependence of Cs 11S Hyperfine Structure at Room Temperature Using Ladder-Type Electromagnetically Induced Transparency," Master's Thesis (National Cheng Kung University, Tainan, Taiwan, 2018).
    82. B. W. Shore, The Theory of Coherent Atomic Excitation, Volume 2, Multilevel Atoms and Incoherence, The Theory of Coherent Atomic Excitation (1990), Vol. 2, p. 1736.
    83. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, "Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion," Nat. Photonics 4(11), 786-791 (2010).
    84. A. Hamer, D. Fricker, M. Hohn, P. Atkinson, M. Lepsa, S. Linden, F. Vewinger, B. Kardynal, and S. Stellmer, "Converting single photons from an InAs/GaAs quantum dot into the ultraviolet: preservation of second-order correlations," Opt. Lett. 47(7), 1778-1781 (2022).
    85. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, "Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter," Phys. Rev. Lett. 109(14), 147404 (2012).
    86. K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, "Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory," Nat. Commun. 7(1), 11200 (2016).
    87. J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68(14), 2153-2156 (1992).
    88. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6(12), 1451-1453 (1994).
    89. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, "Demonstration of low-noise frequency conversion by Bragg Scattering in a Fiber," Opt. Express 14(20), 8989-8994 (2006).
    90. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, "180-nm wavelength conversion based on Bragg scattering in an optical fiber," Opt. Express 14(20), 8995-8999 (2006).
    91. J. L. O'Brien, A. Furusawa, and J. Vučković, "Photonic quantum technologies," Nat. Photonics 3(12), 687-695 (2009).
    92. M. Jain, G. Y. Yin, J. E. Field, and S. E. Harris, "Observation of electromagnetically induced phase matching," Opt. Lett. 18(12), 998-1000 (1993).
    93. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, "Tunable delay of Einstein-Podolsky-Rosen entanglement," Nature 457(7231), 859-862 (2009).
    94. S. Liu, Y. Lou, and J. Jing, "Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier," Phys. Rev. Lett. 123(11), 113602 (2019).
    95. N. B. Phillips, A. V. Gorshkov, and I. Novikova, "Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing," Phys. Rev. A 83(6), 063823 (2011).
    96. Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, "Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency," Phys. Rev. A 79(6), 063839 (2009).
    97. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, "Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence," Phys. Rev. Lett. 81(13), 2675-2678 (1998).
    98. J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, "Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth," New J. Phys. 16(11), 113053 (2014).
    99. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, "Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble," Opt. Express 19(15), 14632-14641 (2011).
    100. Y. S. Lee, S. M. Lee, H. Kim, and H. S. Moon, "Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system," Opt. Express 24(24), 28083-28091 (2016).
    101. D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, "Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide," Optica 2(7), 642-645 (2015).
    102. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, "Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment," Opt. Express 20(10), 11433-11444 (2012).
    103. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, "Four-wave mixing in the diamond configuration in an atomic vapor," Phys. Rev. A 79(3), 033814 (2009).
    104. D. J. Whiting, R. S. Mathew, J. Keaveney, C. S. Adams, and I. G. Hughes, "Four-wave mixing in a non-degenerate four-level diamond configuration in the hyperfine Paschen–Back regime," J. Mod. Opt. 65(5-6), 713-722 (2018).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE