簡易檢索 / 詳目顯示

研究生: 蘇沛錦
Su, Pei-Jin
論文名稱: 正交時頻空間系統於快速衰減通道中二階段通道估測演算法
Two-Stage Channel Estimation Algorithms for Orthogonal Time Frequency Space Systems in Fast Fading Channels
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 88
中文關鍵詞: 正交時頻空間系統快速衰減通道基底擴展模型二階段通道估測偽導引演算法內插
外文關鍵詞: orthogonal time frequency space system, fast fading channel, basis expansion model, two-stage channel estimation, pseudo-pilot algorithm, interpolation
相關次數: 點閱:359下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著未來的通訊系統支持更高移動性之通訊場域,傳統的正交分頻多工系統在高都卜勒位移之情況下,其錯誤率表現由於受到時變通道的影響而大幅衰減。為了能在高速移動的環境中保持良好通訊品質,並且抵抗多重路徑干擾,因此有許多通訊技術被提出,當中包括正交時頻空間系統。正交時頻空間系統是一項新的二維調變技術,透過在延遲-都卜勒域產生調變的訊息符元並且轉換至頻率-時間域,使得每一個傳送符元都能在整個頻率與時間上擴展,達到最大有效分集。此外在延遲-都卜勒域上的時變通道響應具有稀疏性,並且能夠清楚描述環境中移動物體各自的通道參數資訊。
    本論文針對墊零OTFS系統提出一種二階段的通道估測方法,其中使用基底擴展模型對時域通道響應進行建模,首先在第一階段採用最小平方法與線性最小均方誤差估測法估計基底擴展模型係數,之後再透過BEM係數重建出時變通道。由於在高速移動環境下,只有一階段通道估測的效能有限,因此本論文也參考文獻中所使用的偽導引演算法之構想,將其應用在第二階段的BEM最小平方估測法當中。此外為了降低逆矩陣求解的運算複雜度,本論文提出了基於區塊的通道估測方式。最後,本論文所提出的通道估測演算法在第一階段可以兼容文獻中所使用的低複雜度線性內插估測法,最終模擬結果顯示其位元錯誤率表現可以非常接近最佳的完美通道估測之情況。

    The recently proposed orthogonal time frequency space (OTFS) scheme is a novel two-dimensional modulation technique that generates modulated information symbols in the delay-Doppler domain and then transforms them to the frequency-time domain. This allows each transmitted symbol to be spread across the entire frequency and time resources, achieving maximum effective diversity. Furthermore, the time-varying channel response in the delay-Doppler domain exhibits sparsity and can clearly describe the channel parameter information of each moving object in the environment. This thesis proposes a two-stage channel estimation method for zero-padding OTFS (ZP-OTFS) systems. The method utilizes a basis expansion model (BEM) to represent the time-domain channel response. In the first stage, the least squares (LS) and linear minimum mean square error (LMMSE) estimation methods are employed to estimate the BEM coefficients. Subsequently, the time-varying channel is reconstructed from these BEM coefficients. Given the limited performance of single-stage channel estimation in high-mobility environments, this thesis adopts the concept of the pseudo-pilot algorithm from the literature and applies it to the second-stage BEM least squares (BEM-LS) estimation. Additionally, to reduce the computational complexity of matrix inversion, we propose a block-based channel estimation method. Finally, the low-complexity linear interpolation estimation method in the literature can be adopted as the first stage of the two-stage estimation algorithm to significantly reduce the computational complexity. Simulation results demonstrate that the bit error rate (BER) performance of the proposed method can be very close to the perfect channel estimation case.

    摘要 I Abstract II Extended Abstract IV 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 導論 1 1.1 前言 1 1.2 動機 2 1.3 章節介紹 3 1.4 數學符號 4 1.5 論文貢獻 4 第二章 正交時頻空間系統及通道模型 5 2.1 正交時頻空間系統 5 2.2 通道模型 9 2.2.1 連續時間基頻通道模型 9 2.2.2 離散時間基頻通道模型 11 2.3 ZP-OTFS系統 13 2.3.1 時域訊號模型 13 2.3.2 延遲-時間域訊號模型 15 2.3.3 延遲-都卜勒域訊號模型 17 第三章 通道估測—文獻回顧 21 3.1 估測時域通道之ZP-OTFS系統架構 21 3.2 延遲-時間域的引導訊號產生 22 3.3 時域通道之內差估測方法 23 3.3.1 引導訊號區間的通道估測 24 3.3.2 使用內插法估測資料區間的時域通道 26 第四章 通道估測—提出之方法 29 4.1 系統架構與基底擴展模型介紹 29 4.1.1 基底擴展模型 30 4.1.2 基底擴展模型之建模誤差 32 4.1.3 使用BEM之ZP-OTFS傳送訊號結構 33 4.2 數學模型推導 34 4.3 第一階段通道估測方法 38 4.3.1 最小平方估測法 39 4.3.2 線性最小均方誤差估測法 40 4.4 第二階段通道估測—偽導引演算法 43 4.5 基於區塊之通道估測方法 46 第五章 電腦模擬結果 49 5.1 模擬參數 49 5.2 通道模型 49 5.3 使用基底擴展模型估測方法之預先考量 52 5.3.1 基底擴展模型對時域通道的最佳近似 52 5.3.2 基底擴展模型之階數選擇 54 5.4 基底擴展模型估測方法與文獻[9]內插估測法之比較 57 5.5 降低二階段通道估測之BEM基底數量 63 5.5.1 偽導引演算法中基於區塊之通道估測 63 5.5.2 第一階段使用基於區塊之通道估測 66 5.6 降低基底數量之二階段通道估測演算法 69 第六章 結論與未來研究方向 72 參考文獻 73

    [1] R. Hadani et al., "Orthogonal Time Frequency Space Modulation," 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 2017, pp. 1-6.
    [2] R. Hadani et al., "Orthogonal Time Frequency Space Modulation." arXiv preprint arXiv:1808.00519 (2018). URL: https://doi.org/10.48550/arXiv.1808.00519
    [3] R. Hadani and A. Monk, "OTFS: A new generation of modulation addressing the challenges of 5G." arXiv preprint arXiv:1802.02623 (2018). URL: https://doi.org/10.48550/arXiv.1802.02623
    [4] Z. Wei et al., "Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform," in IEEE Wireless Communications, vol. 28, no. 4, pp. 136-144, August 2021.
    [5] T. Thaj and E. Viterbo, "Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems," in IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15606-15622, Dec. 2020.
    [6] P. Raviteja, K. T. Phan and Y. Hong, "Embedded Pilot-Aided Channel Estimation for OTFS in Delay–Doppler Channels," in IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4906-4917, May 2019.
    [7] Y. Liu, Y. L. Guan and D. G. G., "Near-Optimal BEM OTFS Receiver With Low Pilot Overhead for High-Mobility Communications," in IEEE Transactions on Communications, vol. 70, no. 5, pp. 3392-3406, May 2022.
    [8] G. Matz and F. Hlawatsch, “Fundamentals of Time-Varying Communication Channels,” in Wireless Communications Over Rapidly Time-Varying Channels, Elsevier, 2011, pp. 1–63.
    [9] Y. Hong, T. Thaj and E. Viterbo, Delay-Doppler Communications, Amsterdam, The Netherlands: Elsevier, 2022.
    [10] G. Leus, Z. Tang, and P. Banelli, “Estimation of Time-Varying Channels – A Block Approach,” in Wireless Communications Over Rapidly Time-Varying Channels, Elsevier, 2011, pp. 155–197.
    [11] M. -X. Chang and T. -D. Hsieh, "Detection of OFDM Signals in Fast-Varying Channels With Low-Density Pilot Symbols," in IEEE Transactions on Vehicular Technology, vol. 57, no. 2, pp. 859-872, March 2008.
    [12] T. Thaj, E. Viterbo and Y. Hong, "Orthogonal Time Sequency Multiplexing Modulation: Analysis and Low-Complexity Receiver Design," in IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 7842-7855, Dec. 2021.
    [13] P. Raviteja, K. T. Phan, Y. Hong and E. Viterbo, "Embedded Delay-Doppler Channel Estimation for Orthogonal Time Frequency Space Modulation," 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 2018, pp. 1-5.
    [14] Z. Tang, R. C. Cannizzaro, G. Leus and P. Banelli, "Pilot-Assisted Time-Varying Channel Estimation for OFDM Systems," in IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 2226-2238, May 2007.
    [15] Xiaoli Ma, G. B. Giannakis and S. Ohno, "Optimal training for block transmissions over doubly selective wireless fading channels," in IEEE Transactions on Signal Processing, vol. 51, no. 5, pp. 1351-1366, May 2003.
    [16] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Vol I, 1993, Prentice Hall.
    [17] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network. URL: https://www.3gpp.org
    [18] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
    [19] Z. Li, W. Yuan, C. You and Y. Cui, "Efficient Channel Estimation for OTFS Systems in the Presence of Fractional Doppler," 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-5.

    無法下載圖示 校內:2029-08-06公開
    校外:2029-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE