| 研究生: |
郭騏豪 Kuo, Chi-Hao |
|---|---|
| 論文名稱: |
類粽子形狀週期排列微結構之超材料機械性質探討 Effective mechanical properties of elastic metamaterials with a periodic array of Zongzi-like internal structures |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 類粽子型超材料 、極端性質 、可調式微結構 、頻散曲線 |
| 外文關鍵詞: | Zongzi-like metamaterial, cubic symmetry, extremal material, tunable microstructure, band-gap |
| 相關次數: | 點閱:50 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料是一種為了滿足特定需求所加工出來的人造材料,透過微結構精心的幾何設計與性能來加以調控,因此可以產出前所未有的特殊機構如負柏松比結構或剪力模數遠小於體積模數的五模超材料,而本論文所探討的是一種全新的機械超材料,一種微結構與傳統小吃粽子形狀極為相似的類粽子型超材料,其微結構之幾何對稱使得材料在巨觀下具有立方對稱的材料對稱性質,而經由有限元素軟體的分析搭配複合材料理論,我們了解到此超材料同五模具有體積模數與剪力模數相比原始材料而言能夠小上幾個量級的極端性質,且此類粽子型超材料具有優越的可調性,藉由微結構簡易的改變將能夠調動超材料之等效材料參數、等效質量密度以及整體材料的異向性行為,而這些機制背後最強大的支撐點為此粽子結構僅由單一簡易的代數方程式即可表述,而本文除了計算類粽子型超材料於靜態下的力學分析之外,也有針對超材料的頻散曲線做討論,經由有限元素軟體的掃頻方式來瞭解此結構於波傳下的反應為何,而從初步的分析中發現到粽子超材料在特定頻率區間具有帶隙的情況產生,且隨著結構與原始材料的不同,帶隙頻率範圍將能夠有所調整,而後期望能夠再進一步藉由全域模擬的方式來加以驗證頻散曲線的正確性與合理性。
Mechanical metamaterials are man-made materials that exhibit properties and functionalities that cannot be realized by conventional materials. They are regulated through careful geometric design and performance of microstructures. In this thesis we discuss a new type of mechanical metamaterial whose microstructure is similar to the shape of a Chinese food, “Zongzi”. The geometric symmetry of the microstructure causes the material to possess cubic elastic symmetry, therefore have two kinds of different shear deformation mode. Through the analysis of finite element software and the theory of composites, we find that the Zongzi-like metamaterial holds extreme properties such as its effective bulk and shear modulus smaller than the constituent material. Furthermore, we demonstrate the tunability of the microstructure, resulting in changing the equivalent elastic parameters, changing the equivalent mass density and the anisotropic behavior of the overall material. Lastly, we calculate the dispersion curve and show that the Zongzi-like metamaterial exhibit band-gaps which wave can be attenuated in certain frequency ranges. In addition, the band-gap range can be adjusted through different parameters.
Amendola, A., Smith, C. J., Goodall, R., Auricchio, F., Feo, L., Benzoni, G. and Fraternali, F. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Composite Structures, 142, 254-262. (2016).
Assouar, B., Liang, B., Wu, Y., Li, Y., Cheng, J. C. and Jing, Y. Acoustic metasurfaces. Nature Reviews Materials, 3, 460-472. (2018).
Bertoldi, K., Vitelli, V., Christensen, J. and van Hecke, M. Flexible mechanical metamaterials. Nature Reviews Materials, 2, 17066. (2017).
Bloch, F. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik, 52, 555-600. (1929).
Brillouin, L. Wave propagation in periodic structures: electric filters and crystal lattices (Vol. 2): Dover publications. (1953).
Cho, Y., Shin, J.-H., Costa, A., Kim, T. A., Kunin, V., Li, J., Srolovitz, D. J. Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences, 111, 17390-17395. (2014).
Coulais, C., Teomy, E., de Reus, K., Shokef, Y. and van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature, 535, 529-532. (2016).
Cummer, S. A., Christensen, J. and Alù, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1, 16001. (2016).
Fabbrocino, F., Amendola, A., Benzoni, G. and Fraternali, F. Seismic application of pentamode lattices. Ing. Sismica, 33, 62-70. (2016).
Gatt, R., Mizzi, L., Azzopardi, J. I., Azzopardi, K. M., Attard, D., Casha, A., Grima, J. N. Hierarchical auxetic mechanical metamaterials. Scientific Reports, 5, 8395. (2015).
Greaves, G. N., Greer, A. L., Lakes, R. S. and Rouxel, T. Poisson's ratio and modern materials. Nature Materials, 10, 823-837. (2011).
Hedayati, R., Leeflang, A. M. and Zadpoor, A. Additively manufactured metallic pentamode meta-materials. Applied Physics Letters, 110, 091905. (2017).
Hill, R. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357-372. (1963).
Huang, Y., Zhang, X., Kadic, M. and Liang, G. Stiffer, stronger and centrosymmetrical class of pentamodal mechanical metamaterials. Materials, 12, 3470. (2019).
Isobe, M. and Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Scientific Reports, 6, 24758. (2016).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. and Wegener, M. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 100, 191901. (2012).
Kadic, M., Bückmann, T., Schittny, R., Gumbsch, P. and Wegener, M. Pentamode metamaterials with independently tailored bulk modulus and mass density. Physical Review Applied, 2, 054007. (2014).
Kauranen, M. and Zayats, A. V. Nonlinear plasmonics. Nature Photonics, 6, 737-748. (2012).
Lakes, R. Foam structures with a negative Poisson's Ratio. Science, 235, 1038-1040. (1987).
Martin, A., Kadic, M., Schittny, R., Bückmann, T. and Wegener, M. Phonon band structures of three-dimensional pentamode metamaterials. Physical Review B, 86, 155116. (2012).
Milton, G. W. and Cherkaev, A. V. Which elasticity tensors are realizable? Journal of Engineering Materials and Technology, 117, 483-493. (1995).
Mohammadi, K., Movahhedy, M. R., Shishkovsky, I. and Hedayati, R. Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique. Applied Physics Letters, 117, 061901. (2020).
Norris, A. N. Mechanics of elastic networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470, 20140522. (2014).
Norris, A. N. Poisson's ratio in cubic materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 3385-3405. (2006).
Overvelde, J. T. B., Shan, S. and Bertoldi, K. Compaction through buckling in 2D periodic soft and porous structures: Effect of pore shape. Advanced Materials, 24, 2337-2342. (2012).
Prawoto, Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Computational Materials Science, 58, 140-153. (2012).
Schenk, M. and Guest, S. D. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 110, 3276-3281. (2013).
Schittny, R., Bückmann, T., Kadic, M. and Wegener, M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Applied Physics Letters, 103, 231905. (2013).
Schittny, R., Kadic, M., Guenneau, S. and Wegener, M. Experiments on transformation thermodynamics: Molding the flow of heat. Physical Review Letters, 110, 195901. (2013).
Setyawan, W. and Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49, 299-312. (2010).
Shackelford, J. F. Introduction to materials science for engineers. Pearson College Division. (2014)
Shim, J., Perdigou, C., Chen, E. R., Bertoldi, K. and Reis, P. M. Buckling-induced encapsulation of structured elastic shells under pressure. Proceedings of the National Academy of Sciences, 109, 5978-5983. (2012).
Shukla, M. The shear bounds of the cubic polycrystal and its experimental shear modulus. Journal of Physics D: Applied Physics, 15, L177-L180. (1982).
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184-4187. (2000).
Soukoulis, C. M. and Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5, 523-530. (2011).
Sushko, G. Atomistic molecular dynamics approach for channeling of charged particles in oriented crystals. Frankfurt am Main, Johann Wolfgang Goethe-Univ., Diss., 2015. (2015).
Thomas, T. Y. On the stress-strain relations for cubic crystals. Proceedings of the National Academy of Sciences, 55, 235-239. (1966).
Ting, T. C. T. Anisotropic Elasticity: Theory and Applications. Oxford, U.K.:Oxford University Press. (1996)
Ungureanu, B., Achaoui, Y., Enoch, S., Brûlé, S. and Guenneau, S. Auxetic-like metamaterials as novel earthquake protections. EPJ Applied Metamaterials, 2, 17. (2015).
Veselago, V. G. Electrodynamics of substances with simultaneously negative values of ϵ and μ. Usp. fiz. nauk, 92, 517. (1967).
Waitukaitis, S., Menaut, R., Chen, B. G. and van Hecke, M. Origami multistability: From single vertices to metasheets. Physical Review Letters, 114, 055503. (2015).
Walpole, L. J. Orthotropically textured elastic aggregates of cubic crystals. J. Mech. Phys. Solids, 35, 497-517. (1987).
Walpole, L. J. The elastic shear moduli of a cubic crystal. Journal of Physics D: Applied Physics, 19, 457-462. (1986).
Walpole, L. J. The stress-strain law of a textured aggregate of cubic crystals. J. Mech. Phys. Solids, 33, 363-370. (1984).
Wang, Z., Chu, Y., Cai, C., Liu, G. and Wang, M. R. Composite pentamode metamaterials with low frequency locally resonant characteristics. Journal of Applied Physics, 122, 025114. (2017).
Wei, X., Nangreave, J., Jiang, S., Yan, H. and Liu, Y. Mapping the thermal behavior of DNA origami nanostructures. Journal of the American Chemical Society, 135, 6165-6176. (2013).
Zener, C. Elasticity and anelasticity of metals. University of Chicago Press. (1948).
Zheng, Q. S. and Chen, T. New perspective on Poisson's ratios of elastic solids. Acta Mechanica, 150, 191-195. (2001).