簡易檢索 / 詳目顯示

研究生: 陶義方
Tao, Yi-Fang
論文名稱: NMR研究錸硼化合物
NMR investigation of the Re-based borides
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 51
中文關鍵詞: 核磁共振錸硼化合物
外文關鍵詞: NMR, ReB2, Re7B3, Re3B
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文將會介紹Re7B3,Re3B及ReB2的粉末在11B核磁共振的測量下所分析之結果。
      藉由SQUID的分析下得知,Re7B3和Re3B有超導臨界溫度(TC)3.3K和4.9K。然而ReB2卻沒有超導特性反而在相關研究上卻指出擁有superhard的力學結構特性。
      我們使用NMR的自旋晶格鬆弛時間1/T1(spin lattice relaxation rates)的分析研究發現Re7B3和Re3B在費米能階上的態密度主要是由B-s電子的貢獻。另一方面在ReB2實驗結果可推導出主要為B-2p電子的貢獻,並且可與類似的研究OsB2和RuB2相互比較之。
      最終本實驗所量測之B-2p費米能階態密度能夠與理論上的能帶結構的計算之結果相互印證。

    In this work, we report a study of ReB2, Re7B3, and Re3B borides by 11B nuclear magnetic resonance (NMR) measurements.
    From superconducting quantum interference devices (SQUID) measurements, Re7B3 and Re3B were found to have superconductive behavior below 3.3K and 4.9K, respectively. However ReB2 shows no superconducting transition but has been reported to be a superhard material.
    According to 11B spin-lattice relaxation rates (1/T1), B s-electrons are responsible for the observed T1 of Re7B3 and Re3B. On the other hand, the B p-electrons are the main source for the T1 of ReB2, similar to OsB2 and RuB2. In addition, we extracted B-2p Fermi-level DOS of ReB2 which is in good agreement with the value predicted from theoretical band structure calculations.

    Abstract I 摘要 I Acknowledgement III Table of contents IV List of Table VII Chapter 1 Introduction 1 Chapter 2 Basic Principles of NMR 3 2.1 Zeeman Effect 3 2.2 Line Shape 5 2.3 Knight Shift 7 2.4 Quadrupole Effect 12 2.5 Equation of Motion 16 2.6 Spin-lattice relaxation rates 20 Chapter 3 Sample Preparation 27 3.1 Experimental Instruments 27 3.2 Preparing Process 28 Chapter 4 Experiments 29 4.1 Experimental Instruments 29 4.2 Measuring Principle 32 Chapter 5 Results and Discussion 38 5.1 X-ray results and SQUID results 38 5.2 Line Shape 40 5.3 Knight shift 42 5.4 Spin-Lattice Relaxation Rates 43 Chapter 6 Conclusion 48 Reference 49

    1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and Akimitsu, Nature (London) 410, 63 (2001).
    2. A. L. Ivanovskii, Phys. Solid State 45, 1829 (2003), and references therein.
    3. A. Kawano, Y. Mizuta, H. Takagiwa, T. Muranaka and Jun Akimitsu, J. Phys. Soc. Jpn. 72, 1724 (2003).
    4. H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, R. B. Kaner, Sicience 314, 436 (2007).
    5. X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, X. Cao, and J. Meng, Phy. Rev. B 74 224112 (2006).
    6. Y. Liang and B. Zhang, Phy. Rev. B 76 132101 (2007).
    7. W. Zhou, H. Wu, and T. Yildirim, Phy. Rev. B 76 184113 (2007).
    8. Y. X. Wang, Appl. Phy. Lett. 91 101904 (2007).
    9. G. K. Strukova, V. F. Degtyareva, D. V.Shovkun, V. N. Zverev, V. M. Kiiko, A. M. Ionov, A. N. Chaika cond-mat 0105293.
    10. S. H. Baek, B. J. Suh, E. Pavarini, F. Borsa, R. G. Barnes, S. L. Bud’ko, and P. C. Canfield, Phy. Rev. B 66 104510 (2002).
    11. G. Papavassiliou, M. Pissas, M. Karayanni, M. Fardis, S. Koutandos, and K. Prassides, Phy. Rev. B 67 134518 (2003).
    12. S. Serventi, G. Allodi, C. Bucci, R. De Renzi, and G. Guidi, Phy. Rev. B 67 (2003).
    13. C. S. Lue,* T. H. Su, B. X. Xie, S. K. Chen, J. L. MacManus-Driscoll, Y. K. Kuo, H. D. Yang, Phy. Rev. B 73, 214505 (2006).
    14. R. F. Zhang, S. Veprek, A. S. Argon, Appl. Phy. Lett. 91, 201914 (2007).
    15. G. C. Carter, L. H. Bennet and D. J. Kahan, Metallic Shiftsin NMR, Part I, Progress in Marerial Science (Pergamon Press, New York, 1977), Vol. 20.
    16. W. W. Simmons, W. J. O’Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962).
    17. C. P Slichter, Principle of Magnetic Resonance, Springer Verlag, New York (1990).
    18. B. J. Suh, X. Zong, Y. Singh, A. Niazi, D. C. Johnston, Phy. Rev. B 76, 144511 (2007).
    19. C. S. Lue, W. J. Lai, phys. stat. sol. (b) 242, 1108 (2005).
    20. A. Abragam, Principles of Nuclear Magnetism, Oxford Univ. Press, (1982).
    21. L. V. Gerven, Nuclear Magnetic Resonance in Solids, Plenum Press, New York (1977).
    22. J. Keeler, Understanding NMR Spectroscopy, University of Cambridge, (2002).
    23. L. C. Hebel, C. P. Slichter, Phys. Rev. 113, 1504 (1958).
    24. T. P. Das, E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York London (1958).
    25. A. H. Morrish, The Physical Principles of Magnetism, IEEE Press, New York (2001).
    26. C. S. Lue, A Nuclear magnetic resonance probe of Fe-V-Al intermetallics, Texas A&M University (1999).
    27. J. Korringa, Physica 16, 601 (1950).
    28. T. Asada, K. Terakura, J. Phys. F: Met. Phys. 12, 1387, (1982).
    29. T. Asada, K. Terakura, T. Jarlborg, J. Phys. F: Met. Phys. 11, 1847, (1981).
    30. E. L. Hahn, Phys. Rev. 80, 580, (1950).
    31. P. Carretta, A. Lascialfari, NMR-MRI,μSR amd Mossbauer Spectroscopies in Molecular Magnets, Springer Press, New York, (2007).
    32. J. K. M. Sanders, B. K. Hunter, Modern NMR Spectroscopy, Oxford University Press, New York, (1987).
    33. P. T. Callaghn, Principles of Nuclear Magnetic Resonance Microscopy, Oxford Press, New York, (1991).

    下載圖示 校內:立即公開
    校外:2008-07-10公開
    QR CODE