簡易檢索 / 詳目顯示

研究生: 章邵騏
Zhang, Shao-Qi
論文名稱: 混合生質油改質瀝青之特性分析
Characterization of Hybrid Bio-oil Modified Asphalt Binder
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 生質油生質膠泥流變行為油水分離
外文關鍵詞: bio-oil, bio-binder, rheological behavior, dehydration
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀝青為石油精鍊之產品,在高溫時呈現高度黏稠之液態狀而在室溫時則為半固態狀,由於瀝青具有防水與黏結之特性,因此主要用於道路與機場鋪面中製作瀝青混凝土時黏結顆粒骨材之膠結劑。近年來由於石油價格的不斷攀升與溫室氣體排放導致全球暖化,世界各國接致力於發展能取代傳統石化能源之永續能源科技例如生質能源。因此本研究之目的在探討以生質油中大分子部分之基礎材料性質及應用於道路工程中取代部分瀝青膠泥之可行性評估。
    本研究將評估三種熱裂解生質油:柳杉木屑生質油、咖啡渣生質油與稻桿生質油進行油水分離後成生質膠泥,用咖啡渣及稻桿膠泥以四種不同比例評估(2%、8%、25%、50%)與石油瀝青膠泥(Pen60-70)混配而成之單一生質改質瀝青膠泥的化性、物性及流變性質。以及利用最佳比例混配72%的柳杉木屑及28%的稻稈膠泥後,用三種比例(8%、25%及50%)及兩種比例(0.5%及1%)之介面活性劑混配石油瀝青膠泥之化性及流變行為。
    結果顯示三種(稻稈、咖啡渣、柳杉木屑)生質油可以藉由真空蒸餾法去除大量水份。在FTIR試驗中可以觀察出單一生質油中有較多的氧元素。單一稻稈及咖啡渣改質瀝青膠泥的複合剪力摸數(G*)、車轍參數(G*/sinδ)及60℃黏滯度隨著添加比例的增加而逐漸降低。兩種最佳比例之生質改質瀝青膠泥的複合剪力摸數(G*)及車轍參數(G*/sinδ)隨著添加比例的增加而逐漸降低,其中複合剪力摸數(G*)除了100%的生質改質膠泥沒有逐漸降低反而接近石油瀝青膠泥,且只有100%的生質改質膠泥的車轍參數(G*/sinδ)有超過規範最小值1kPa,顯示在100%的生質改質膠泥只有100%可以抵抗車轍,在小比例添加量下介面活性劑的添加並無法增高其車轍參數。

    The main objective of this study is to investigate the feasibility of using developed bio-binder (Coffee ground, Rice straw) as replacement/modifier of asphalt binder for construction. In this study, bio-binder was used as asphalt binder modifier (2% and 8%) as well as asphalt binder extender (25% and 50%). Therefore, it is important to investigate the physical, chemical and rheological properties of the developed bio-binder.
    Tests results showed that vacuum distillation process can be used to effectively dehydrate the fast pyrolysis bio-oil. Both CGMB and RSMB have higher penetration than Pen 60-70. The chemical composition of both CGMB and RSMB are similar to the vast majority of the Pen60-70 except the bio-oil modified binders are rich in oxygen content. Increasing CG and RS bio-oil content result in decreasing complex shear modulus (G*).

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 研究範圍 3 第二章 文獻探討 4 2.1 生質能 4 2.2 生質油 5 2.3 熱裂解 7 2.3.1 慢速熱裂解 7 2.3.2 快速熱裂解 7 2.4 生質油的組成成分與物性 8 2.4.1 水 9 2.4.2 氧氣 9 2.4.3 酸度 9 2.4.4 熱值 10 2.4.5 灰分 10 2.5 生質油的化學成分 11 2.5.1 化學結構 11 2.5.2 木質纖維素 12 2.6 生質油的流變特性 14 2.7 生質膠泥作為瀝青膠泥之取代 16 2.7.1 稻稈 16 2.7.2 咖啡渣 16 2.7.3 柳杉木屑 16 2.8 瀝青膠泥的流變特性 19 2.8.1 牛頓與非牛頓流體 19 2.8.2 黏彈性行為 20 2.8.3 主曲線 21 第三章 研究方法 23 3.1 研究流程 23 3.2 試驗材料 25 3.2.1 石油瀝青膠泥 25 3.2.2 生質膠泥 25 3.2.3 介面活性劑-山梨醇油酸酯(SPAN 80) 25 3.3 生質油脫水試驗 27 3.3.1 沉降分離法 27 3.3.2 真空蒸餾法 28 3.3.3 卡氏水分測定儀MKS-500 30 3.4 生質膠泥物性試驗 31 3.4.1 離析試驗 31 3.4.2 比重試驗(比重瓶法) 32 3.4.3 針入度試驗 33 3.4.4 軟化點(環球法) 35 3.5 生質膠泥化性試驗 36 3.5.1 傅立葉轉換紅外線光譜儀(FTIR) 36 3.6 生質膠泥流變性質試驗 37 3.6.1 旋轉黏度計 37 3.6.2 動態剪切流變儀(Dynamic Shear Rheometer,DSR) 39 3.6.3 頻率掃描 40 3.6.4 潛變試驗 41 第四章 結果與討論 42 4.1 脫水試驗 42 4.1.1 沉降分離法 42 4.1.2 真空蒸餾法 43 4.1.3 脫水試驗結論 46 4.2 單一生質改質膠泥之物性 47 4.2.1 各種試驗 47 4.2.2 離析試驗 49 4.3 單一種生質改質膠泥之化性 51 4.3.1 傅立葉轉換紅外線光譜試驗結果(FTIR) 51 4.4 單一種生質改質瀝青膠泥之流變性質 54 4.4.1 改質膠泥之黏度溫感性(VTS) 54 4.4.2 改質膠泥之複合剪力模數(G*)變化 55 4.4.3 改質膠泥之損失正切(tanδ)變化 57 4.4.4 改質膠泥之潛變行為 59 4.4.5 改質膠泥質流參數與鋪面績效之關係 61 4.5 兩種生質膠泥互相混配結果 63 4.5.1 稻稈與柳杉木屑膠泥之混配最佳比例 63 4.5.2 傅立葉轉換紅外線光譜試驗結果(FTIR) 65 4.5.3 最佳比例改質膠泥之複合剪力模數(G*)變化 68 4.5.4 最佳比例改質膠泥之損失正切(tanδ)變化 70 4.5.5 最佳比例改質膠泥之潛變行為 72 4.5.6 最佳比例改質膠泥質流參數與鋪面績效之關係 75 第五章 結論與建議 77 5.1 結論 77 5.2 後續研究之方向 79 參考文獻 80

    Airey, G., & Mohammed, M. (2008). Rheological properties of polyacrylates used as synthetic road binders. Rheologica Acta, 47(7), 751-763. doi: 10.1007/s00397-007-0250-3
    Asphalt. (2014). In Wikipedia, The Free Encyclopedia. Retrieved 15:49, June 11, 2014, from http://en.wikipedia.org/w/index.php?title=Asphalt&oldid=612124949.
    ASTM-D5. (2013). Standard Test Method for Penetration of Bituminous Materials. doi: 10.1520/D0005-13
    ASTM-D36. (2012). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). doi: 10.1520/d0036_d0036m-12
    ASTM-D70. (2009). Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method). doi: 10.1520/d0070-09e01
    ASTM-D946. (2010). Standard Specification for Penetration-Graded Asphalt Cement for Use in Pavement Construction. doi: 10.1520/d0946_d0946m-09a
    ASTM-D4402-02. (2013). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. doi: 10.1520/d4402_d4402m-13
    ASTM-D7173. (2011). Standard Practice for Determining the Separation Tendency of Polymer from Polymer Modified Asphalt. doi: 10.1520/d7173-11
    ASTM-D7405. (2010). Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. doi: 10.1520/d7405-10a
    Boucher, M., Chaala, A., & Roy, C. (2000). Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass and Bioenergy, 19(5), 337-350.
    Campbell, I. M. (1983). Biomass, catalysts and liquid fuels. Lancaster, Penn.: Technomic Pub. Co.
    Chailleux, E., Ramond, G., Such, C., & de La Roche, C. (2006). A mathematical-based master-curve construction method applied to complex modulus of bituminous materials. Road Materials and Pavement Design, 7(sup1), 75-92.
    ChartsBin. (2014). Historical Crude Oil prices,http://chartsbin.com/view/oau.
    Chen, J.-S., Huang, C., Chu, P., & Lin, K. (2007). Engineering characterization of recycled asphalt concrete and aged bitumen mixed recycling agent. Journal of Materials Science, 42(23), 9867-9876.
    Demirbas, M., & Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Conversion and Management, 47(15), 2371-2381.
    Diebold, J. P. (2000). A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils: National Renewable Energy Laboratory Golden, CO.
    Du, J., Liu, P., Liu, Z.-H., Sun, D.-G., & Tao, C.-Y. (2010). Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. Journal of Fuel Chemistry and Technology, 38(5), 554-559.
    Fini, E. H., Al-Qadi, I. L., You, Z., Zada, B., & Mills-Beale, J. (2011). Partial replacement of asphalt binder with bio-binder: characterisation and modification. International Journal of Pavement Engineering, 1-8. doi: 10.1080/10298436.2011.596937
    Goyal, H., Seal, D., & Saxena, R. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and Sustainable Energy Reviews, 12(2), 504-517.
    Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., . . . Pittman Jr, C. U. (2007). Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy & Fuels, 22(1), 614-625.
    Institute, A. (2003). Superpave Performance Graded Asphalt Binder Specifications and Testing.
    Kandhal, P. S., & Foo, K. Y. (1997). Designing recycled hot mix asphalt mixtures using Superpave technology. ASTM Special Technical Publication, 1322, 101-117.
    Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56(24), 11757-11760.
    Ladanai, S., & Vinterbäck, J. (2009). Global potential of sustainable biomass for energy.
    Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y., & Cen, K. (2004). Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy, 26(5), 455-462.
    Marateanu, M., & Anderson, D. (1996). TIME-TEMPERATURE DEPENDENCY OF ASPHALT BINDERS--AN IMPROVED MODEL (WITH DISCUSSION). Journal of the Association of Asphalt Paving Technologists, 65.
    Mašek, O., Konno, M., Hosokai, S., Sonoyama, N., Norinaga, K., & Hayashi, J.-i. (2008). A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification. Biomass and Bioenergy, 32(1), 78-89.
    Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20(3), 848-889.
    Mullen, C. A., & Boateng, A. A. (2008). Chemical composition of bio-oils produced by fast pyrolysis of two energy crops†. Energy & Fuels, 22(3), 2104-2109.
    Mullen, C. A., & Boateng, A. A. (2011). Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 90(2), 197-203.
    Oasmaa, A., & Czernik, S. (1999). Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy & Fuels, 13(4), 914-921.
    Özçimen, D., & Karaosmanoğlu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy, 29(5), 779-787.
    Park, Y.-K., Jeon, J.-K., Kim, S., & Kim, J.-S. (2004). Bio-oil from rice straw by pyrolysis using fluidized bed and char removal system. ACS Div Fuel Chem, 49, 800-801.
    Raouf, M. A., & Williams, R. C. (2009). Determination of Pre-Treatment Procedure Required for Developing Bio-Binders from Bio-Oils. Paper presented at the 2009 Mid-Continent Transportation Research Symposium, Ames, Iowa.
    Scahill, J., Diebold, J., & Feik, C. (1997). Removal of residual char fines from pyrolysis vapors by hot gas filtration Developments in thermochemical biomass conversion (pp. 253-266): Springer.
    Shihadeh, A., & Hochgreb, S. (2002). Impact of biomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy & Fuels, 16(3), 552-561.
    Sipilä, K., Kuoppala, E., Fagernäs, L., & Oasmaa, A. (1998). Characterization of biomass-based flash pyrolysis oils. Biomass and Bioenergy, 14(2), 103-113.
    Suciptan, T. (2012). Investigate the Rheological Behavior of Japanese Cedar Based Bio-Binder As Partial Replacement For Bituminous Binder. 成功大學土木工程學系學位論文, 1-105.
    Tang, S., & Williams, R. C. (2009). Antioxidant Effect of Bio-Oil Additive ESP on Asphalt Binder. Paper presented at the Proceedings of the 2009 Mid-Continent Transportation Research Symposium, Ames, Iowa.
    Wan Nik, W., Eng Giap, S., Masjuki, H., & Senin, H. (2006). Application of modified power law and Arrhenius relationship in studying rheological behavior of bio-oils.
    water. (2014). In Wikipedia, The Free Encyclopedia. from http://en.wikipedia.org/wiki/Phase_diagram.
    Williams, R. C. (2010). Development of Non-Petroleum Based Binders for Use in Flexible Pavements.
    Yang, S., Wu, M., & Wu, C. (2014). Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products. Energy.
    田雲生, 張金元, & 陳令錫. (2013). 稻稈擠壓成型機之試驗研究.
    行政院農業委員會農糧署. (2012). 101年農業統計年報.
    吳森榮、萬皓鵬、李宏台. (2011). 生質裂解油國內發展現況.
    林倫瑩. (2009). 油價與生質能源作物價格之關聯性分析.
    洪誌偉. (2010). 木屑熱烈解反應研究.
    陳榮輝. (2003). 木材熱裂解特性與生成物關係描述.
    黃少谷. (2007). 黃豆裂解生成物之分析與研究.
    楊授印,陳坤禾. (2011). 生質裂解燃料添加劑對柴油引擎性能暨排汙之影響.
    蔡長展. (2002). 瀝青流變行為對鋪面車轍變形之影響.
    蔡詩珊. (2008). 淺談生質能.
    蔡攀鰲. (2009). 瀝青混凝土.
    蔣立中. (2006). 物理程序對咖啡殘渣熱解特性之初探.

    下載圖示 校內:2017-08-01公開
    校外:2017-08-01公開
    QR CODE