簡易檢索 / 詳目顯示

研究生: 魏郁芳
Wei, Yu-Fang
論文名稱: 架構非發酵菌核醣體核酸基因內轉錄區(ITS) 序列資料庫並用以鑑定Acinetobacter calcoaceticus-Acinetobacter baumannii Complex
Construction of a Sequence Database of 16S-23S rDNA Spacer (ITS) of Nonfermentative Gram-Negative Bacilli and Identification of Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) Complex by ITS Sequence Analysis
指導教授: 張長泉
Chang, Tsung-Chain
張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 96
中文關鍵詞: 資料庫非發酵菌A. calcoaceticus-A. baumannii complex核糖體核酸基因內轉錄區
外文關鍵詞: spacer region, A. calcoaceticus-A. baumannii complex, database, nonfermenters, 16S-23S rDNA
相關次數: 點閱:41下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不動桿菌屬 (Acinetobacter) 和其他葡萄糖非發酵菌在臨床上是重要的病原菌。然而,臨床實驗室卻沒有一套簡單又正確的方法可以用來區分Acinetobacrer。Acinetobacter中的A. calcoaceticus (genospecies 1), A. baumannii (genospeices 2), genospeices 3 (未命名),genospecies 13TU (未命名),因生化特性十分相近,故統稱為Acinetobacter calcoaceticus-Acinetobacter baumannii complex (Acb complex), Acb complex為Acinetobacter中分離率最高的細菌。本研究評估核糖體核酸基因的內轉錄區 (internal transceribed spacer region, ITS) 序列作為鑑定臨床Acb complex之可行性。目前GenBank資料庫中所提供的ITS序列仍不足,因此需要架構完整的ITS序列資料庫,才能用來鑑定Acb complex或其他臨床常見非發酵菌。本研究以PCR擴增108株 (42種) 參考菌株的ITS序列,並結合GenBank資料庫的序列,並初步以此資料庫做為鑑定Acb complex之工具。以此資料庫測試82株Acb complex臨床分離株,這82株臨床分離株並進一步以API 20 NE測定,結果63株為A. baumannnii,19株為A. calcoaceticus。若以ITS序列分析則發現這63株A. baumannii中,有2株為genospecies 3,14株可能為未命名的Acinetobacter spp.,所以事實上臨床鑑定之A. baumannii可能有高達 25.4%為鑑定錯誤。在19株A. calcoaceticus中,有16株為genospecies 3,而3株可能為未命名的Acinetobacter spp.,所以事實上臨床鑑定之A. calcoaceticus可能皆為鑑定錯誤。這些未命名的Acinetobacter spp.中,可分為五個genotypes,其中絕大多數 (13株,76%) 為同一genotype。這些未命名的Acinetobacter spp.需進一步以DNA-DNA hybridization的方法確認其基因種(genospecies)。本研究中的ITS序列資料可做為未來發展DNA chip之基礎。

    Members of the genus Acinetobacter and other nonfermentative gram-negative bacteria are clinically important pathogens. However, clinical laboratories still lack simple methods that allow accurate identification of these species. For example, species of the Acinetobacter calcoaceticus- Acinetobacter baumannii complex (Acb complex) that includes Acinetobacter calcoaceticus (genospecies 1), A. baumannii (genospecies 2), unnamed genospecies 3 and 13TU are difficult to be differentiated. In fact, a complete discrimination between these species is possible only by DNA-DNA hybridization that is a complex and time-consuming method and cannot be performed in most clinical laboratories. In this study, the feasibility of using the sequences of 16S-23S rDNA spacer region (ITS) for the identification of Acb complex was evaluated. The ITS data in GenBank were insufficient to identify clinically relevant nonfermenters. The ITS regions from 108 strains (42 species) were amplified by PCR and sequenced; the sequence data in combination with those available in GenBank were used to construct an ITS sequence database for the identification of Acb complex. The database was used to test 82 clinical isolates of Acb complex; these microorgranisms included 63 isolates of A. baumannii and 19 isolates of A. calcoaceticus, as verified by API 20 NE. It is interesting to find among the 63 isolates of A. baumannii, 2 isolates might be genospecies 3 and 14 isolates were ungroupable, as revealed by ITS sequence analysis. Therefore, it is possible that 25.4% of clinical isolates of A. baumannii may be misidentified. Furthermore, among the 19 clinical isolates of A. calcoaceticus, 16 isolates might be genospecies 3 and 3 isolates were ungroupable as evidenced by ITS sequence analysis, and it seems that the designation of A. calcoaceticus to clinical isolates is, under most conditions, not correct. The 17 ungroupable isolates could be divided into 5 genotypes. The delineation of these ungroupable isolates, with their ITS sequences close to genospecies 2 and 13TU, needs further investigation such as DNA-DNA hybridization experiment. The ITS sequence database of nonfermenters may be useful for developing a DNA chip for identification of these microorganisms.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 第一章 緒論 1 1.1 細菌的基本分類 1 1.2 Acinetobacter特性及分類 2 1.3 Acinetobacter calcoaceticus-Acinetobacter baumannii complex 6 1.3.1 Acb complex 之致病機轉 6 1.3.2 Acb complex 之感染 6 1.4 Acb complex之鑑定方法 8 1.4.1 傳統鑑定方法 8 1.4.2 商業化鑑定套組 16 1.4.3 分子分型與鑑定 16 1.5 研究動機及目的 23 1.6 研究架構 25 第二章 實驗原理 27 2.1 聚合酶連鎖反應 27 2.2 電泳分析 28 2.2.1 凝膠電泳 (gel electrophoresis) 28 2.2.2 凝膠電泳分離原理 29 2.3 分子選殖 30 2.4 DNA定序 32 2.4.1 Maxam-Gilbert method 32 2.4.2 Sanger's method 33 第三章 實驗 34 3.1 實驗藥品及配置方法 34 3.1.1 實驗藥品 34 3.1.2 實驗藥品配製 35 3.1.3 實驗設備 38 3.2 菌種來源 41 3.3 實驗 44 3.3.1 菌種培養及保存 44 3.3.2 DNA萃取 (extraction) 44 3.3.3 PCR放大 46 3.3.4 瓊脂凝膠電泳 (agarose gel electrophoresis) 48 3.3.5 PCR產物純化 50 3.3.6 分子選殖 51 3.3.7 定序分析 53 3.3.8 序列比對 53 第四章 結果與討論 55 4.1 定序結果 55 4.1.1 同種序列比對 55 4.1.2 Acb complex之ITS序列比對結果 55 4.1.3 A. lwoffii phenotype之ITS序列比對結果 56 4.1.4 Acb complex與其他Acinetobacter序列比對結果 56 4.1.5 非Acinetobacter之葡萄糖非發酵菌序列比對結果 57 4.2 建立資料庫 72 4.3 臨床分離株測試 76 第五章 結論 85 參考文獻 87

    [1] 何茂旺、王復德、劉正義,(2000),談不動桿菌屬,臨床醫學,46:14-20。
    [2] 李詩益,林金絲,(1999),Acinetobacter baumannii院內感染之介紹,院內感控雜誌,9:151-155。
    [3] 陳豪勇,(1999),最新醫用微生物學 (上),藝軒,台北。
    [4] 蔡文城,(1996),實用臨床微生物診斷學,第八版,九州圖書,台北。
    [5] 嚴小燕、彭銘業、楊美紅、陳依雯、張靜美、張峰義,(2001),某醫學中心Acinetobacter baumannii院內感染調查,院內感控雜誌,11:216-226。
    [6] Alcamo, I. E. (2001). DNA Technology, 2nd ed. Harcourt, New York.
    [7] Arbeit, R. D. (1999). Laboratory procedures for the epidemiologic analysis of microorganisms, p. 116-137. In: Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (ed.). Manual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D.C.
    [8] Bennasar, A., R. Rossello-Mora, J. Lalucat, and E. R. B. Moore. (1996). 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst. Bacteriol. 46: 200-205.
    [9] Bergogen-Berezin, E., and K. J. Towner. (1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9: 148-165.
    [10] Bernards, A. T., L. Dijkshoorn, J. van der Toorn, B. R. Bochner, and C. P. A. van Boven. (1995). Phenotypic characterization of Acinetobacter strains of 13 DNA-DNA hybridization groups by means of the Biolog system. J. Med. Microbiol. 42: 113-119.
    [11] Bernards, A. T., J. van der Toorn, C. P. A. van Boven, L. Dijkshoorn. (1996). Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur. J. Clin. Microbiol. Infect. Dis. 15: 303-308.
    [12] Bouvet, P. J. M., and P. A. D. Grimont. (1986). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36: 228-240.
    [13] Bouvet, P. J. M., and P. A. D. Grimont. (1987). Identification and biotyping of clinical isolates of Acinetobacter. Ann. Inst. Pasteur Microbiol. 138: 569-578.
    [14] Bouvet, P. J. M., and S. Jeanjean. (1989). Delineation of new proteolytic genomic species in the genus Acinetobacter. Res. Microbiol. 140: 291-299.
    [15] Brooks, G. F., J. S. Butel, and S. A. Morse. (2001). Jawetz, Melnick & Adelberg's Medical Microbiology, 22nd ed, McGraw-Hill, London.
    [16] Chang S. C., Y. C. Chen, K. T. Luh, W. C. Hsieh. (1995). In vitro activities of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood. Diagn. Microbiol. Infect. Dis. 23: 105-110.
    [17] Coenye, T., P. Vandamme, J. R. W. Govan, and J. J. LiPuma. (2001). Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 3427-3436.
    [18] Di Cello, F., M. Pepi, F. Baldi, and R. Fani. (1997). Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res. Microbiol. 148: 237-249.
    [19] Dolzani, L., E. Tonin, C. Lagatolla, L. Prandin, and C. Monti-Bragadin. (1995). Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic spacer sequences. J. Clin. Microbiol. 33: 1108-1113.
    [20] Forster, D. H., and F. D. Daschner. (1998). Acinetobacter species as nosocomial pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 17: 73-77.
    [21] Garcia-Arata, M. I., P. Gerner-Smidt, F. Baquero, and A. Ibranhim. (1997). PCR-amplified 16S and 23S rDNA restriction analysis for identification of Acinetobacter strains at the DNA group level. Res. Microbiol. 148: 777-784.
    [22] Gerner-Smidt, P. (1992). Ribotyping of the Acinetobacter calcoaceticus- Acinetobacter baumannii complex. J. Clin. Microbiol. 30: 2680-2685.
    [23] Gerner-Smidt, P., and I. Tjernberg. (1993). Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Acta Path. Microbiol. Immunol. Scand. 101: 826-832.
    [24] Gerner-Smidt, P., and W. Frederiksen. (1993). Acinetobacter in Denmark: I. Taxonomy, antibiotic susceptibility, and pathogenicity of 112 clinical strains. Acta Path. Microbiol. Immunol. Scand. 101: 815-825.
    [25] Gerner-Smidt, P., I. Tjernberg, and J. Ursing. (1991). Reliability of phenotypic tests for identification of Acinetobacter species. J. Clin. Microbiol. 29: 277-282.
    [26] Gouby, A., M. Carles-Nurit, N. Bouziges, G. Bourg, R. Mesnard, and P. J. M. Bouvet. (1992). Use of pulsed-field gel electrophoresis for investigation of hospital outbreaks of Acinetobacter baumannii. J. Clin. Microbiol. 30: 1588-1591.
    [27] Grundmann, H., C. Schneider, D. Hartung, F. D. Daschner, and T. L. Pitt. (1995). Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol. 33: 528-534.
    [28] Guasp, C., E. R. B. Moore, J. Lalucat, and A. Bennasar. (2000). Utility of internally transcribed 16S-23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int. J. Syst. Bacteriol. 50: 1629-1639.
    [29] Gurtler, V., and V. A. Stanisich. (1996). New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16.
    [30] Hauben, L., L. Vauterin, E. R. B. Moore, B. Hoste, and J. Swings. (1999). Genomic diversity of the genus Stenotrophomonas. Int. J. Syst. Bacteriol. 49: 1749-1760.
    [31] Horrevorts, A., K. Bergman, L. Kollee, I. Breuker, I. Tjernberg, L. Dijkshoorn. (1995). Clinical and epidemiological investigations of Acinetobacter genomospecies 3 in a neonatal intensive care unit. J. Clin. Microbiol. 33: 1567-72.
    [32] Houang, E. T. S., Y. W. Chu, K. Y. Ng, C. M. Leung, and A. F. B. Cheng. (2003). Significance of genomic DNA group delineation in comparative studied of antimicrobial susceptibility of Acinetobacter spp. Antimicrob. Agents Chemother. 47: 1472-1475.
    [33] Hsueh. P. R., L. J. Teng, C. Y. Chen, W. H. Chen, C. J. Yu, S. W. Ho, and K. T. Luh. (2002). Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg. Infect. Dis. 8: 827-832.
    [34] Hunter, P. R., and M. A. Gaston. (1988). Numerical index of the Discriminatory ability of typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol. 26: 2465-2466.
    [35] Ibrahim, A., P. Gerner-Smidt, and A. Sjostedt. (1996). Amplification and restriction endonuclease digestion of large fragment of gene coding for rRNA as a rapid method for discrimination of closely related pathogenic bacteria. J. Clin. Microbiol. 34: 2894-2898.
    [36] Janssen, P., K. Maquelin, R. Coopman, I. Tjernberg, P. Bouvet, K. Kersters, and L. Dijkshoorn. (1997). Discrimination of Acinetobacter genomic species by AFLP fingerprinting. Int. J. Syst. Bacteriol. 47: 1179-1187.
    [37] Juni, E. (1984). Genus III. Acinetobacter Brisou and Prevot 1954, 727AL. p. 303-307. In: Krieg, N. R., and J. G. Holt (ed.). Bergey's manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore.
    [38] Kiska, D. L., A. Kerr, M. C. Jones, J. A. Caracciolo, B. Eskridge, M. Jordan, S. Miller, D. Hughes, N. King, and P. H. Gilligan. (1996). Accuracy of four commercial systems for identification of Burkholderia cepacia and other gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis. J. Clin. Microbiol. 34: 886-891.
    [39] Kitch, T. T., M. R. Jacobs, P. C. Appelbaum. (1992). Evaluation of the 4-hour RapID NF Plus method for identification of 345 gram-negative nonfermentative rods. J. Clin. Microbiol. 30: 1267-1270.
    [40] Koeleman, J. G. M., J. Stoof, D. J. Bidsmans, P. H. M. Savelkoul, and C. M. J. E. Vandenbroucke-Grauls. (1998). Comparison of amplified ribosomal DNA restriction analysis, random amplified ribosomal DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii. 36: 2522-2529.
    [41] Kuhn, I., L. G. Burman, S. Haeggman, K. Tullus, and B. E. Murray. (1995). Biochemical fingerprinting compared with ribotyping and pulsed-field gel electrophoresis of DNA for epidemiological typing of enterococci. J. Clin. Microbiol. 33: 2812-2817.
    [42] Lagatolla, C., A. Lavenia, E. Tonin, C. Monti-Bragadin, and L. Dolzani. (1998). Characterization of oligonucleotide probes for the identification of Acinetobacter spp., A. baumannii and Acinetobacter genomic species 3. Res. Microbiol. 149: 557-566.
    [43] Lagatolla, C., A. Lavenia, E. Tonin, C. Monti-Bragadin, and L. Dolzani. (1998). Characterization of oligonucleotide probes for the identification of Acinetobacter spp., A. baumannii and Acinetobacter genomic species 3. Res. Microbiol. 149: 557-566.
    [44] Liu, P. Y., and W. L. Wu. (1997). Use of different PCR-based DNA fingerprinting techniques and pulsed-field gel electrophoresis to investigate the epidemiology of Acinetobacter calcoaceticus- Acinetobacter baumannii complex. Diagn. Microbiol. Infect. Dis. 28: 19-28.
    [45] Martin-Lozano, D., J. M. Cisneros, B. Becerril, L. Cuberos, T. Prados, C. Ortiz-Leybe, E. Canas, and J. Pachon. (2002). Comparion of a repetitive extragenic palindromic sequence-based PCR method and microbiological methods for determining strain sources in cases of nosocomial Acinetobacter baumannii bacteremia. J. Clin. Microbiol. 40: 4571-4575.
    [46] Mathews, C. K., and K. E. van Holde. (1996). Biochemistry, 2nd ed. The Benjamin/Cummings Publishing Co., California.
    [47] Nemec, A., L. Dijkshoorn, and P. Je?ek. (2000). Recognition of two novel phenons of the genus Acinetobacter among non-glucose- acidifying isolates from human specimens. J. Clin. Microbiol. 38: 3937-3941.
    [48] Nemec, A., T. D. Baere, I. Tjernberg, M. Vaneechoutte, T. J. K. van der Reijden, and L. Dijkshoorn. (2001). Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from clinical specimens. Int. J. Syst. Bacteriol. 51: 1891-1899.
    [49] Nishimura, Y., T. Ino, and H. Iizuka. (1988). Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38: 209-211.
    [50] Nowak, A., and J. Kur. (1996). Differentiation of seventeen genospecies of Acinetobacter by multiplex polymerase chain reaction and restriction fragment length polymorphism analysis. Mol. Cell. Probes 10: 405-411.
    [51] Olive, D. M., and P. Bean. (1999). Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661-1669.
    [52] Prashanth, K., and S. Badrinath. (2000). Simplified phenotypic tests for identification of Acinetobacter spp. and their antimicrobial susceptibility status. J. Med. Microbiol. 49: 773-778.
    [53] Rius, N., M. C. Fuste, C. Guasp, J. Lalucat, and J. G. Loren. (2001). Clonal population structure of Pseudomonas stutzeri, a species with exceptional genetic diversity. J. Bacteriol. 183: 736-744.
    [54] Rossau, R., A. van Landschoot, M. Gillis, and J. de Ley. (1991). Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int. J. Syst. Bacteriol. 41: 310-319.
    [55] Seifert, H., and P. Gerner-Smidt. (1995). Comparison of ribotyping and pulsed-field gel electrophoresis for molecular typing of Acinetobacter isolates. J. Clin. Microbiol. 33: 1402-1407.
    [56] Tang, Y. W., N. M. Ellis, M. K. Hopkins, D. H. Smith, D. E. Dodge, and D. H. Persing. (1998). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J. Clin. Microbiol. 36: 3674-3679.
    [57] Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33: 2233-2239.
    [58] Tjernberg, I., and J. Ursing. (1989). Clinical strains of Acinetobacter classified by DNA-DNA hybridization. Acta Path. Microbiol. Immunol. Scand. 97: 595-605.
    [59] Trupl, J., A. Kunova, E. Oravcova, P. Pichna, E. Kukuckova, S. Grausova, E. Grey, S. Spanik, A. Demitrovicova, K. Kralovicova, J. Lacka, I. Krupova, J. Svec, P. Koren, V. J. Krcmery. (1997). Resistance pattern of 2816 isolates isolated from 17631 blood cultures and etiology of bacteremia and fungemia in a single cancer institution. Acta Oncol. 36: 643-649.
    [60] van Dessel, H., T. E. M. Kamp-Hopmans, A. C. Fluit, S. Brisse, A. M. G. A. de Smet, L. Dijkshootn, A. Troelstra, J. Verhoef, and E. M. Mascini. (2002). Outbreak of a susceptible strain of Acinetobacter species 13 (sensu Tjernberg and Ursing) in an adult neurosurgical intensive care unit. J. Hosp. Infect. 51: 89-95.
    [61] Vaneechoutte, M., L. Dijkshoorn, I. Tjernberg, A. Elaichouni, P. de Vos, D. Claeys, G. Claeys, and G. Verschraegen. (1995). Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J. Clin. Microbiol. 33: 11-15.
    [62] Vaneechoutte, M., I. Tjernberg, F. Baldi, M. Pepi, R. Fani, E. R. Sullivan, J. van der Toorn, and L. Dijkshoorn. (1999). Oil-degrading Acinetobacter strain RAG-1 and strains described as 'Acinetobacter venetianus sp. nov.' belong to the same genomic species. Res. Microbiol. 150: 69-73.
    [63] Versalovic, J., T. Koeuth, and J. R. Lupski. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucl. Acids Res. 19: 6823-6831.
    [64] Vila, J., M. A. Marcos, and M. T. Jimenez de Anta. (1996). A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J. Med. Microbiol. 44: 482-489.
    [65] von Graevenitz, A. (1995). Acinetobacter, Alcaligenes, Moraxella, and other nofermentative gram-negative bacteria. p. 520-532. In: Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, R. H. Yolken (ed.). Manual of Clinical Microbiology, 6th ed. American Society for Microbiology, Washington, D.C.
    [66] Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Muiper, and M. Zabeau. (1995). AFLP: a new concept for DNA fingerprinting. Nucl. Acids Res. 21: 4407-4414.
    [67] Welsh, J., and M. McClelland. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213-7218.
    [68] Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, S.V. Tingey. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 25: 6531-6535.

    下載圖示 校內:2004-07-31公開
    校外:2004-07-31公開
    QR CODE