簡易檢索 / 詳目顯示

研究生: 張耀仁
Chang, Yao-Jen
論文名稱: LTE-A網路中D2D通訊系統中繼裝置選擇與跨層分析
On Relay Selection Schemes and Cross-Layer Analysis for Device-to-Device Communications in LTE-A Systems
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 109
中文關鍵詞: D2D通訊中繼選擇傳輸延遲剩餘電量排隊理論自適應調變與編碼
外文關鍵詞: Device-to-device communication, Relay selection, Transmission delay, Remaining battery, Queuing theory, AMC
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Device-to-device (D2D) 通訊概念的提出是用於未來有效改善蜂巢網路的負載。然而,一般的D2D通訊,從發送端裝置至接收端裝置會建立一個直接的通訊鏈路,這一段直接通訊鏈路將會受到兩裝置間的距離和鏈路品質的影響而造成通訊品質上的限制。在本篇論文中,提出了一種用於彌補直接的D2D通訊的不足,是為中繼輔助D2D通訊,此裝置對裝置通訊的方法能增加LTE-A網路的系統容量。我們旨在設計一個對於中繼輔助D2D通訊之中繼裝置的選擇策略,藉由此策略能夠增進D2D通訊的效能。此外,我們也提出了基於跨層分析的中繼輔助D2D通訊策略,其共同考量到裝置的剩餘電池時間還有利用排隊理論分析之端對端通訊之延遲。我們也建立了另一個用於延遲評估的端對端通訊模型,以排隊理論與自適應調變與編碼特性的結合進行端對端的延遲分析。模擬分析結果能夠確實顯示出所提出的包含剩餘電量與端對端延遲之中繼選擇策略能夠有效的增強整個系統的效能。

    Device-to-device (D2D) communications have been proposed as an effective way for traffic offloading in futuristic cellular systems. However, using only D2D communication, which establishes a direct link between a source and destination, limits advantages brought in by D2D communications due to a long separation distance or poor link quality between the source and destination user equipments (UEs). In this thesis, relay-assisted D2D communication is proposed as a supplement to direct D2D communications for enhancing traffic offloading capacity of LTE-A systems. We aim to design a relay UE selection strategy for relay-assisted D2D communications, which can improve the performance of relay-assisted D2D communications significantly. We also propose a cross-layer relay selection scheme that considers the criteria jointly, relay UE (RUE) remaining battery time, and end-to-end transmission delay on relay-assisted D2D path. We establish an end-to-end delay estimation model based on queuing theory combining adaptive modulation and coding (AMC) for relay-assisted D2D. Simulation results validate the overall performance of the proposed relay selection scheme within RUE remaining battery and end-to-end transmission delay.

    Contents 摘要i Abstract ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables x List of Abbreviations xi List of Symbols xiv Dedication xviii 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 LTE/LTE-A Systems and D2D Communications Architectures 7 2.1 LTE/LTE-A Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Multiple Access Techniques . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Physical Resource Blocks . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Implementation of D2D Communications . . . . . . . . . . . . . . . . . . . 16 2.2.1 D2D Systems Architectures . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Peer Discovery Techniques . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Interference Management . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Mode Selection and Resource Allocation . . . . . . . . . . . . . . . 21 2.2.5 Relay Selection in Relay-assisted D2D Communications . . . . . . . 22 3 D2D Communications Scenario Assumptions 25 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 D2D Communications Scenario . . . . . . . . . . . . . . . . . . . . 26 3.1.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Problem Formulation for Relay Selection . . . . . . . . . . . . . . . . . . . 29 3.2.1 Direct D2D Communication Mode . . . . . . . . . . . . . . . . . . . 29 3.2.2 Relay-Assisted D2D Communication Mode . . . . . . . . . . . . . . 31 3.2.3 RUE Remaining Operation Time Estimation . . . . . . . . . . . . . 34 3.3 Success Probability Performance Analysis . . . . . . . . . . . . . . . . . . . 36 4 Cross-layer Queuing Analysis in Relay Selection 41 4.1 Queuing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Queuing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Queuing State Transition on S - Ri Link . . . . . . . . . . . . . . . 44 4.3.2 Queuing State Transition on Ri - D Link . . . . . . . . . . . . . . . 45 4.3.3 Introduction to Finite State Markov Chain . . . . . . . . . . . . . . . 46 4.3.4 Average Packet Queue Length of Source DUE S . . . . . . . . . . . 48 4.3.5 Average Packet Queue Length of relay UE Ri . . . . . . . . . . . . . 50 4.4 Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.1 Transmission Delay of S - Ri link . . . . . . . . . . . . . . . . . . 53 4.4.2 Transmission Delay of Ri - D link . . . . . . . . . . . . . . . . . . 56 4.4.3 End-to-End Transmission Delay Consideration in Relay Selection . . 57 5 Relay Selection Based on Queuing with Adaptive Modulation and Coding 59 5.1 Adaptive Modulation and Coding . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.1 Introduction to Adaptive Modulation and Coding . . . . . . . . . . . 60 5.1.2 SINR Boundaries for Different Modulation and Coding Schemes . . 62 5.2 Queuing Service States Transition Matrix for S - Ri and Ri - D links . . . . 64 5.3 Queuing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4 Queuing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.4.1 Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Queuing State Transition on S - Ri link . . . . . . . . . . . . . . . . 70 5.4.3 Queuing State Transition on Ri - D Link . . . . . . . . . . . . . . . 71 5.4.4 Average Packet Queue Length of source DUE S . . . . . . . . . . . 72 5.4.5 Average Packet Queue Length of relay UE Ri . . . . . . . . . . . . . 75 5.5 Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.5.1 Transmission Delay of S - Ri link . . . . . . . . . . . . . . . . . . 78 5.5.2 Transmission Delay of Ri - D link . . . . . . . . . . . . . . . . . . 80 5.5.3 End-to-End Transmission Delay Consideration in Relay Selection . . 81 6 Performance Evaluation 83 6.1 Simulation Scenario and Major Parameters . . . . . . . . . . . . . . . . . . 84 6.2 D2D Communications Implementation Procedure . . . . . . . . . . . . . . . 85 6.3 End-to-End Transmission Delay and Data Amount Performance Analysis . . 91 6.4 End-to-End Transmission Delay Performance Analysis with AMC . . . . . . 96 7 Conclusion and Future Work 101 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 References 105

    [1] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-Device Communication in LTEAdvanced Networks: A Survey,” IEEE Communications Surveys and Tutorials, DOI: 10.1109/COMST.2014.2375934, Dec. 2014.
    [2] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device communication in 5G cellular networks: Challenges, solutions, future directions,” IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.
    [3] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Enable device-to-device communications underlaying cellular networks: Challenges and research aspects,”IEEE Communications
    Magazine, vol. 52, no. 6, pp. 90–96, 2014.
    [4] G. Yu, L. Xu, D. Feng, R. Yin, G. Y. Li, and Y. Jiang, “Joint mode selection and resource allocation for device-to-device communications,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 3814–3824, Nov. 2014.
    [5] X.R. Ma, R. Yin, and G.D. Yu, “A distributed relay selection method for relayassisted Device-to-Device communication system,” IEEE 23rd International Symposium
    on Personal Indoor and Mobile Radio Communications, pp. 271-350, 2012.
    [6] W.C. Xia, S.X. Shao, and J. Sun, “Relay selection strategy for device-to-device communication,” Information and Communications Technologies International Conference,
    pp. 318-323, 2013.
    [7] 3GPP, Overview of 3GPP Release 8 V0.3.3., Sep. 2014.
    [8] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
    Universal Terrestrial Radio Access Network (E-UTRAN); LTE physical layer; General description (Release 12),” 3GPP TS 36.201 V12.2.0, Apr. 2015.
    [9] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
    Universal Terrestrial Radio Access Network (E-UTRAN); User Equipment (UE) radio transmission and reception (Release 12),” 3GPP TS 36.101 V12.9.0, Oct. 2015.
    [10] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
    Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 12),” 3GPP TS 36.300 V12.6.0, Jul. 2015.
    [11] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 12),” 3GPP TS 36.331 V12.7.0, Mar. 2015.
    [12] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Feasibility study for Proximity Services (ProSe) (Release 12),” 3GPP TR 22.803 V12.2.0, Jun. 2013.
    [13] S. Andreev, A. Pyattaev, K. Johnsson, O. Galinina, and Y. Koucheryavy, “Cellular Traffic Offloading onto Network-Assisted Device-to-Device Connections,” IEEE Communications Magazine, vol. 52, no. 4, pp. 20–31, Apr. 2014.
    [14] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator Controlled Device-to-Device Communications in LTE-Advanced Networks,” IEEE Wireless Communications, vol. 19,
    no. 3, pp. 96–104, Jun. 2012.
    [15] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An Overview of 3GPP Device-to-Device Proximity Services,” IEEE Communications Magazine, vol. 52, no. 4, pp.
    40–48, 2014.
    [16] D.Wu, L. Zhou, Y. Cai, R. Q. Hu, and Y. Qian, “The Role of Mobility for D2D Communications In LTE-Advanced Networks: Energy vs. Bandwidth Efficiency,” IEEE Wireless
    Communications, vol. 21, no. 2, pp. 66–71, Apr. 2014.
    [17] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, and Z. Turanyi, “Design Aspects of Network Assisted Device-to-Device Communications,” IEEE Communications Magazine, vol. 50, no. 3, pp. 170–177, March 2012.
    [18] K. Zhu and E. Hossain, “Joint Mode Selection and Spectrum Partitioning for Device-to- Device Communication: A Dynamic Stackelberg Game,” IEEE Transactions on Wireless Communications, vol. 14, no. 3, pp. 1406–1420, Mar. 2015.
    [19] Y. Pei and Y. -C. Liang, “Resource Allocation for Device-to-Device Communications Overlaying Two-Way Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3611–3621, 2013.
    [20] D. Feng et al., “Device-to-device communications underlaying cellular networks,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3541–3551,Aug. 2013.
    [21] M. Hasan, E. Hossain, and D. Kim, “Resource allocation under channel uncertainties for relay-aided device-to-device communication underlaying lte-a cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 4, pp. 2322–2338, Apr. 2014.
    [22] S. Wen, X. Zhu, Y. Lin, Z. Lin, X. Zhang, and D. Yang, “Achievable Transmission Capacity of Relay-Assisted Device-to-Device (D2D) Communication Underlay Cellular
    Networks,” 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Sept. 2013, pp. 1-5.
    [23] M.-M. Miao, J. Sun, and S.-X. Shao, “A Cross-Layer Relay Selection Algorithm for D2D Communication System,” 2014 International Conference on Wireless Communication
    and Sensor Network (WCSN), Dec. 2014, pp. 448–453.
    [24] M. Sikora, J. N. Laneman, M. Haenggi, D. J. Costello, and T. E. Fuja, “Bandwidth-and power-efficient routing in linear wireless networks,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2624–2633, 2006.
    [25] F. Wang, C. Xu, L. Song, and Z. Han, “Energy-efficient resource allocation for device-to-device underlay communication,” IEEE Transactions on Wireless Communications, vol. 14, no. 4, pp. 2082-2092, Apr. 2015.
    [26] Lei Lei, Yiru Kuang, Xuemin Shen, Chuang Lin, and Zhangdui Zhong, “ Resource Control in Network Assisted Device-to-Device Communications: Solutions and Challenges,” IEEE Communications Magazine, vol. 52, no. 6, pp. 108–117, Jun. 2014.
    [27] L. Lei, X. Shen, M. Dohler, C. Lin, and Z. Zhong, “Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 12, pp. 6697–6715, Dec. 2014.
    [28] Dimitri P. Bertsekas and John N. Tsitsiklis, “Markov Chains,” in Introduction to probability, 2nd ed.: Athena Scientific, 2008, pp. 339-379
    [29] K. Zheng, Y. Wang, L. Lei, and W. Wang, “Cross-layer queuing analysis on multihop relaying networks with adaptive modulation and coding,” IET Communications, vol. 4, no. 3, pp. 295–302, Feb. 2010.
    [30] Leonard Kleinrock, “Queueing Systems, Volume I: Theory,” Wiley-Interscience, 1975.
    [31] Q. Liu, S. Zhou, and G.B. Giannakis, “Queuing with adaptive modulation and coding over wireless links: cross-layer analysis and design,” IEEE Transactions on Wireless Communications, vol. 4, no. 3, pp. 1142–1153, May. 2005.
    [32] Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links,” IEEE Transactions on Wireless Communications, vol. 2, no. 5, pp. 1746–1775, Sep. 2004.
    [33] Q. Liu, S. Zhou, and G.B. Giannakis, “Cross-layer combining of queuing with adaptive modulation and coding over wireless links,” Proc. IEEE Military Comm. Conf., vol. 1, pp. 717-722, Oct. 2003.
    [34] H.S. Wang and N. Moayeri, “Finite-state Markov channel-A useful model for radio communication channels,” IEEE Transactions on Vehicular Technology, vol. 44, no. 1, pp. 163–171, Feb. 1995.
    [35] Q. Zhang and S. A. Kassam, “Finite-state Markov model for Rayleigh fading channels,” IEEE Transactions on Communications, vol. 47, no. 11, pp. 1688-1692, Nov. 1999.
    [36] M. S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Kluwer Journal on wireless communications, vol. 13, pp.119-143, May 2000.
    [37] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved
    Universal Terrestrial Radio Access Network (E-UTRAN); Radio Frequency (RF) system scenarios (Release 12),” 3GPP TR 36.942 V12.0.0, Oct. 2014.

    無法下載圖示 校內:2021-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE