簡易檢索 / 詳目顯示

研究生: 林宛瑩
Lin, Wan-Ying
論文名稱: 探討一個新的先天性免疫調控分子TAPE-L在病毒防禦的角色
Characterization of a novel innate immune regulator, TAPE-L, in antiviral defenses
指導教授: 凌斌
Ling, Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 55
中文關鍵詞: 先天性免疫
外文關鍵詞: innate immunity, TAPE, TAPE-L, RIG-I-like receptors
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人體中屬於先天性免疫系統的Pattern recognition receptors (PRRs),如Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs),可以辨識病原體具高保留性的產物Pathogen-associated molecular patterns (PAMPs)而引起免疫反應。病毒感染時,細胞質的RLRs,包含RIG-I及 MDA5,負責偵測病毒核醣核酸物質並引起抗病毒免疫反應。然而目前對於RLRs與其他分子的交互作用來調控抗病毒的機制仍有尚不清楚的地方需要進一步研究。我們實驗室先前的研究發現了一個新的調控先天性免疫反應的分子TAPE (TBK1-Associated Protein in Endolysosomes),匯集Toll-like receptor 3 (TLR3), Toll-like receptor 4 (TLR4),及 RLRs的訊息傳遞而影響第一型干擾素的生成及抗病毒反應。透過搜尋人類基因體的資料庫,我們發現了一個具有與TAPE分子達54.2%蛋白質序列相似度的分子,我們稱之TAPE-L (TAPE-like protein)。在此篇研究中,我主要探討TAPE-L在RLR所調控的訊息傳遞路徑中所扮演的角色。我的實驗結果顯示,TAPE-L參與在NF-kB、IFN-b及Erk路徑中。默化(knockdown)細胞內TAPE-L表現會阻礙transfected polyI:C 活化RIG-I和表達MDA5所調控的IFN-b及NF-kB報導基因的活化。在transfected polyI:C 刺激時,RIG-I所調控的細胞激素IFN-b、RNATES及IL-8的生成也受到TAPE-L蛋白表現減少而下降。實驗同時比較TAPE-L和TAPE兩者關係得到一有趣的發現,即當細胞受到transfected polyI:C 刺激時,TAPE-L會參與在RIG-I及MDA5調控的IFN-b及NF-kB兩者活化路徑,而TAPE卻只會影響IFN-b路徑。我進一步發現TAPE-L會和 IPS-1、RIG-I或MDA5在細胞內形成分子團並且加成和RIG-I、MDA5及IPS-1所活化的IFN-b反應。總結以上實驗結果,我發現TAPE-L會參與RIG-I、MDA5調控的訊息路徑。在未來的研究,我們可以利用細胞及動物實驗探討TAPE-L 在對抗病毒感染的各種角色。

The innate immune system senses pathogen invasion by multiple pattern recognition receptors (PRRs), like Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), to recognize highly conserved pathogen-associated molecular patterns (PAMPs). Cytosolic RLRs, including RIG-I and MDA5, are responsible for detecting viral RNA (vRNA) species to trigger antiviral immune responses during viral infection. The mechanisms of how RLRs cooperate with other molecules in regulating antiviral immunity remain to be further investigated. Previous work from our lab revealed a novel innate immune regulator called TAPE (TBK1-Associated Protein in Endolysosomes), which links the TLR3, TLR4, RIG-I and MDA5 pathways to IFN-b induction. A TAPE-like protein termed TAPE-L with 54.2% similarity to TAPE was found in the human genome. Here I report that TAPE-L plays a key role in the RLR pathways. TAPE-L was shown to involve in the NF-kB, IFN-b and ERK pathways. Knockdown of TAPE-L impaired RIG-I-mediated IFN-b and NF-kB promoter activation by transfected polyI:C stimulation. TAPE-L knockdown also impaired MDA5-mediated IFN-b and NF-kB by overexpression of MDA5. TAPE-L knockdown inhibited RIG-I-mediated IFN-b, RANTES and IL-8 cytokine production by transfected polyI:C stimulation and the antiviral response against vesicular stomatitis virus. Interestingly, TAPE-L was involved in regulating both the IFN- and NF-kB pathways during RIG-I and MDA5 signaling while TAPE was only required for IFN-b activation. Furthermore, TAPE-L interacted and synergized with IPS-1, RIG-I or MDA5 to activate IFN-b. Collectively, my work demonstrates that TAPE-L acts as an innate immune regulator in the RIG-I and MDA5 pathways. In the future, we can determine the implication of TAPE-L during virus infection in vitro and in vivo.

1. Introduction 1.1 Innate immunity ………………………………………………………………7 1.2 PRRs and antiviral immunity ……………………………………7 1.3 The Toll-like receptors (TLRs) ………………………………………7 1.4 The RIG-I-like receptors (RLRs) ………………………………………………8 1.4.1 The recognition of virus and RNA by RLRs ………………………………8 1.4.2 The RLR signaling pathways ……………………………………………9 1.5 TBK1 and IKKepsilon link TLR and RLR signals to type I IFNs induction ………………………………………………9 1.6 Role of TAPE in innate immunity …………………………………………………10 1.7 Identification of TAPE-L …………………………………………………………11 2. Materials and methods 2.1 Cell culture and reagents ………………………………………12 2.2 Plasmids ………………………………………………………………………12 2.3 Primers …………………………………………………………………12 2.4 DNA transfection ……………………………………………………………13 2.5 RNA interference…13 2.6 Reporter assay …………………………………………………………………………………14 2.7 Enzyme-linked immunosorbent assay (ELISA) ………………14 2.8 Co-immunoprecipitation and western blot ………………………15 2.9 Plaque assay ……………………………………………16 2.10 Phospholipids binding assay ……………………………………………16 2.11 Confocol microscopy …………………………………………………………………16 3. Results 3.1. Sequence analysis and tissue distribution of TAPE-L…17 3.2. Roles of TAPE-L in the innate immune pathways IFN-b, NF-kB and MAPK …………………………………………………………………………………………………………17 3.3 Roles of TAPE- L in the RIG-I-like receptor pathways 17 3.3.1 TAPE-L is involved in the RIG-I pathway………………………………17 3.3.2 TAPE-L is required for the MDA5 pathways ………18 3.3.3 TAPE-L synergizes with RIG-I, MDA5 or IPS-1 for the IFN-b promoter activation ………………………………………………………………19 3.3.4 TAPE-L forms a complex with IPS-1 and MDA5 or RIG-I…19 3.3.5 Relationships between TAPE-L and IPS-1, TBK1 and IKKb………………………………………………………………………………………………………………………………………………19 3.4 Role of TAPE-L in RIG-I-mediated antiviral defense ……20 3.4.1 TAPE-L is critical for RIG-I-mediated antiviral response ……………………………………………………………………………………………………………20 3.5 Roles of TAPE in the RIG-I pathways ………………………………………20 3.5.1 TAPE interacts with RIG-I and IPS-1 in a complex ……20 3.5.2 TAPE is able to bind phospholipids ………………………………………21 3.5.3 The cellular localization of TAPE ………………………………………21 4. Discussion 4.1 Roles of TAPE-L in the RLR pathways …………………………………………22 4.2 Differential roles of TAPE-L and TAPE in the innate immune pathways …………………………………………………………………………………………………………22 4.3 Potential roles of TAPE-L and TAPE in regulating organelles for RLR signaling…………………………………………………………………………23 5. References……………………………………………………………………………………………………………………28 6. Figures and figure legends ………………………………………………………………………36 7. Appendix……………………………………………………………………………………………………………50 7.1. Effects of TAPE and its deletion mutants on RIG-I- and MDA5-mediated IFN-b pathways………………………………………………………………50 7.2. Role of TAPE in TRIF-mediated IFN-b pathway……………………52 7.3. Role of TAPE in IPS-1-mediated IFN-b pathway……………………53 7.4 Abbreviations…………………………………………………………………………………………………………54

5. References
1.Janeway, C.A., Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1:1-13.
2.Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
3.Takeuchi, O., and Akira, S. 2010. Pattern recognition receptors and inflammation. Cell 140:805-820.
4.Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J., and Alnemri, E.S. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509-513.
5.Unterholzner, L., Keating, S.E., Baran, M., Horan, K.A., Jensen, S.B., Sharma, S., Sirois, C.M., Jin, T., Latz, E., Xiao, T.S., et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997-1004.
6.Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K.A., and Hornung, V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10:1065-1072.
7.Yang, P., An, H., Liu, X., Wen, M., Zheng, Y., Rui, Y., and Cao, X. 2010. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11:487-494.
8.Garcia, M.A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., and Esteban, M. 2006. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70:1032-1060.
9.Malathi, K., Paranjape, J.M., Bulanova, E., Shim, M., Guenther-Johnson, J.M., Faber, P.W., Eling, T.E., Williams, B.R., and Silverman, R.H. 2005. A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc Natl Acad Sci U S A 102:14533-14538.
10.Haller, O., Staeheli, P., and Kochs, G. 2007. Interferon-induced Mx proteins in antiviral host defense. Biochimie 89:812-818.
11.Akira, S., and Takeda, K. 2004. Toll-like receptor signalling. Nat Rev Immunol 4:499-511.
12.Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088.
13.Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
14.Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., and Akira, S. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10-14.
15.Kawai, T., and Akira, S. 2006. TLR signaling. Cell Death and Differentiation 13:816-825.
16.Barton, G.M., and Kagan, J.C. 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews Immunology 9:535-542.
17.Zou, J., Chang, M., Nie, P., and Secombes, C.J. 2009. Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9:85.
18.Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105.
19.Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., et al. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19-28.
20.Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., Gale, M., Inagaki, F., and Fujita, T. 2008. Nonself RNA-Sensing Mechanism of RIG-I Helicase and Activation of Antiviral Immune Responses. Molecular Cell 29:428-440.
21.Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997-1001.
22.Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J., and Gale, M., Jr. 2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523-527.
23.Rehwinkel, J., Tan, C.P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., et al. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397-408.
24.Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601-1610.
25.Pichlmair, A., Schulz, O., Tan, C.P., Rehwinkel, J., Kato, H., Takeuchi, O., Akira, S., Way, M., Schiavo, G., and Reis e Sousa, C. 2009. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761-10769.
26.Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Baker, S.C., Barchet, W., Diamond, M.S., et al. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137-143.
27.Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M., Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104:582-587.
28.Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M., Jr., Akira, S., et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851-2858.
29.Satoh, T., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., and Takeuchi, O. 2010. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107:1512-1517.
30.Takeuchi, O., and Akira, S. 2009. Innate immunity to virus infection. Immunol Rev 227:75-86.
31.Michallet, M.C., Meylan, E., Ermolaeva, M.A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., Konig, M., et al. 2008. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28:651-661.
32.Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-920.
33.Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284:807-817.
34.Hayakawa, S., Shiratori, S., Yamato, H., Kameyama, T., Kitatsuji, C., Kashigi, F., Goto, S., Kameoka, S., Fujikura, D., Yamada, T., et al. 2010. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nature Immunology.
35.Kok, K.H., Lui, P.Y., Ng, M.H., Siu, K.L., Au, S.W., and Jin, D.Y. 2011. The Double-Stranded RNA-Binding Protein PACT Functions as a Cellular Activator of RIG-I to Facilitate Innate Antiviral Response. Cell Host Microbe 9:299-309.
36.Friedman, C.S., O'Donnell, M.A., Legarda-Addison, D., Ng, A., Cardenas, W.B., Yount, J.S., Moran, T.M., Basler, C.F., Komuro, A., Horvath, C.M., et al. 2008. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9:930-936.
37.Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O'Rourke, K.M., Eby, M., Pietras, E., Cheng, G., Bazan, J.F., et al. 2007. DUBA: a deubiquitinase that regulates type I interferon production. Science 318:1628-1632.
38.Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104:7500-7505.
39.Lin, R., Yang, L., Nakhaei, P., Sun, Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. 2006. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281:2095-2103.
40.Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., et al. 2008. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573-577.
41.Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491-496.
42.Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., Katsuki, M., Noguchi, S., Tanaka, N., et al. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539-548.
43.Lin, R., Genin, P., Mamane, Y., and Hiscott, J. 2000. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 20:6342-6353.
44.Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199:1641-1650.
45.McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C., Golenbock, D.T., and Maniatis, T. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101:233-238.
46.Perry, A.K., Chow, E.K., Goodnough, J.B., Yeh, W.C., and Cheng, G. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199:1651-1658.
47.Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G.P., Lin, R., and Hiscott, J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-1151.
48.Rogaeva, A., Galaraga, K., and Albert, P.R. 2007. The Freud-1/CC2D1A family: Transcriptional regulators implicated in mental retardation. Journal of Neuroscience Research 85:2833-2838.
49.Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R.J., Anteki, L., Walsh, C.A., Olender, T., Straussberg, R., Magal, N., Taub, E., et al. 2006. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of Medical Genetics 43:203-210.
50.Raymond, F.L., and Tarpey, P. 2006. The genetics of mental retardation. Hum Mol Genet 15 Spec No 2:R110-116.
51.Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. 2008. Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Molecular and Cellular Biology 28:5996-6009.
52.Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T., Shimotohno, K., Harada, T., Nishida, E., et al. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307-3318.
53.Chang, C.H., Lai, L.C., Cheng, H.C., Chen, K.R., Syue, Y.Z., Lu, H.C., Lin, W.Y., Chen, S.H., Huang, H.S., Shiau, A.L., et al. 2011. TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. Journal of Biological Chemistry.
54.Hadjighassem, M.R., Austin, M.C., Szewczyk, B., Daigle, M., Stockmeier, C.A., and Albert, P.R. 2009. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry 66:214-222.
55.Hadjighassem, M.R., Galaraga, K., and Albert, P.R. 2011. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci 33:214-223.
56.Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669-682.
57.Hinz, M., Broemer, M., Arslan, S.C., Otto, A., Mueller, E.C., Dettmer, R., and Scheidereit, C. 2007. Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. J Biol Chem 282:32311-32319.
58.Cho, W., and Stahelin, R.V. 2005. Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119-151.
59.Zhang, H., Chen, J., Wang, Y., Peng, L., Dong, X., Lu, Y., Keating, A.E., and Jiang, T. 2009. A Computationally Guided Protein-Interaction Screen Uncovers Coiled-Coil Interactions Involved in Vesicular Trafficking. Journal of Molecular Biology 392:228-241.
60.Parry, D.A., Fraser, R.D., and Squire, J.M. 2008. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 163:258-269.
61.Zhao, M., Li, X.D., and Chen, Z.J. 2010. CC2D1A, a DM14 and C2 Domain Protein, Activates NF-kappa B through the Canonical Pathway. Journal of Biological Chemistry 285:24372-24380.
62.Le Roy, C., and Wrana, J.L. 2005. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Reviews Molecular Cell Biology 6:112-126.
63.Gallagher, C.M., and Knoblich, J.A. 2006. The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641-653.
64.Hacker, H., Tseng, P.H., and Karin, M. 2011. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11:457-468.
65.Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204-207.
66.Saha, S.K., Pietras, E.M., He, J.Q., Kang, J.R., Liu, S.Y., Oganesyan, G., Shahangian, A., Zarnegar, B., Shiba, T.L., Wang, Y., et al. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25:3257-3263.
67.Paz, S., Vilasco, M., Werden, S.J., Arguello, M., Joseph-Pillai, D., Zhao, T., Nguyen, T.L., Sun, Q., Meurs, E.F., Lin, R., et al. 2011. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 21:895-910.
68.Gohda, J., Matsumura, T., and Inoue, J. 2004. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol 173:2913-2917.
69.Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727-740.
70.Konno, H., Yamamoto, T., Yamazaki, K., Gohda, J., Akiyama, T., Semba, K., Goto, H., Kato, A., Yujiri, T., Imai, T., et al. 2009. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 4:e5674.
71.Yoshida, R., Takaesu, G., Yoshida, H., Okamoto, F., Yoshioka, T., Choi, Y., Akira, S., Kawai, T., Yoshimura, A., and Kobayashi, T. 2008. TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J Biol Chem 283:36211-36220.
72.Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988.
73.Cheng Kao, C., Onoguchi, K., Onomoto, K., Takamatsu, S., Jogi, M., Takemura, A., Morimoto, S., Julkunen, I., Namiki, H., Yoneyama, M., et al. 2010. Virus-Infection or 5′ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1. PLoS Pathogens 6:e1001012.
74.Dixit, E., Boulant, S., Zhang, Y., Lee, A.S., Odendall, C., Shum, B., Hacohen, N., Chen, Z.J., Whelan, S.P., Fransen, M., et al. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668-681.
75.Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. 2011. MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response. Cell.
76.Horner, S.M., Liu, H.M., Park, H.S., Briley, J., and Gale, M. 2011. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proceedings of the National Academy of Sciences.
77.Sasai, M., Linehan, M.M., and Iwasaki, A. 2010. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329:1530-1534.
78.Czech, M.P. 2003. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 65:791-815.
79.Ikonomov, O.C., Sbrissa, D., and Shisheva, A. 2006. Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291:C393-404.
80.Jaekel, R., and Klein, T. 2006. The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11:655-669.
81.Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161-167.
82.Potter, J.A., Randall, R.E., and Taylor, G.L. 2008. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Structural Biology 8:11.
83.Shaw, M.L., Stone, K.L., Colangelo, C.M., Gulcicek, E.E., and Palese, P. 2008. Cellular proteins in influenza virus particles. PLoS Pathog 4:e1000085.
84.Hayes, M.J., Rescher, U., Gerke, V., and Moss, S.E. 2004. Annexin-actin interactions. Traffic 5:571-576.
85.Morel, E., Parton, R.G., and Gruenberg, J. 2009. Annexin A2-dependent polymerization of actin mediates endosome biogenesis. Dev Cell 16:445-457.
86.Ferran, M.C., and Lucas-Lenard, J.M. 1997. The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71:371-377.

下載圖示 校內:2024-07-31公開
校外:2024-07-31公開
QR CODE