簡易檢索 / 詳目顯示

研究生: 黃郁華
Huang, Yu-Hua
論文名稱: 氮化鋁鎵/氮化鎵系列PIN紫外光偵測器之製作與分析
Fabrication and Characterization of AlGaN/GaN PIN Ultraviolet Photodetectors
指導教授: 許進恭
Sheu, Jin-Gong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 紫外光氮化鎵氮化鋁鎵偵測器
外文關鍵詞: photodetectors, PIN, AlGaN, GaN, ultraviolet
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對氮化鋁鎵/氮化鎵系列PIN紫外光偵測器元件做相關之研究與製作,包括成長具有不同吸收層p-i-n結構與具有p+-GaN/n+-GaN穿隧接面n-i-p結構。
    在具有不同吸收層p-i-n結構中,由於傳統氮化鎵吸收層光偵測器在吸收層厚度的控制上,受到載子漂移速度與RC頻寬限制,另外由於載子漂移累積,產生嚴重的空間電荷遮蔽效應,造成頻寬限制與輸出功率衰退的缺點。有鑑於此,我們利用低溫成長氮化鎵與氮化鎵結合構成吸收層,與傳統氮化鎵吸收層作比較。由於低溫成長氮化鎵結晶品質很差,內部存在許多缺陷,載子於傳輸時將被此缺陷捕捉,利用此特性,我們可將元件的響應速度從原本載子漂移限制轉變成以載子生命期為主導因素,加快元件的操作速度,改善了傳統氮化鎵吸收層所面臨的問題。
    在具有p+-GaN/n+-GaN穿隧接面n-i-p結構中,我們利用反向成長n-i-p結構,減少一道p型歐姆接觸金屬製程,使得光偵測器的製程簡化。另外,n-i-p結構光偵測器的光電特性並不比傳統p-i-n結構差,這對大量生產與人力成本消耗的高科技光電半導體產業而言,將是可以繼續研發改進的光偵測器元件之一。

    This thesis aims at fabricating and characterizing of AlGaN/GaN PIN ultraviolet photodetectors (PDs). We have fabricated two kinds of PDs, including p-i-n structures with different absorption layers and n-i-p structures with buried p+-GaN/n+-GaN tunneling junction.
    In the p-i-n PDs, PDs with low-temperature-growth GaN as absorption layers are systematically compared with the traditional PDs. There have some fundamental limits of traditional PD. For instances, the absorption thickness is limited by the carrier-drift-velocity, RC-constant, and space-charge- shielding effect, and results in restriction on bandwidth and output power. To improve the performance regarding to above-mentioned specifications, we attempt to insert a LT-GaN film as a part of the absorption layer. However, owing to the inferior quality of LT-GaN film, photo-generated carriers will be trapped by native defects. Therefore, the improvement is limited.
    In the n-i-p PDs, the p+/n+ tunneling junction, with a low-resistivity n++-In0.3Ga0.7N layer associated with a p+-GaN layer deposited on an n-type GaN bottom contact layer, allows the anode electrode contact to be formed directly on the n-type GaN bottom contact layer. When a bias is applied to the device with the aforesaid inverted structure, the tunneling junction will behave like an “Ohmic contact”. Accordingly, an inverted p-i-n UV PD can operate like a conventional device. Owing to the inverted structure, we can performe both p-ohmic contact and n-ohmic contact in a single metal deposition procedure and thereby reduce the production cost of the PDs. Besides, the n-i-p structure also has acceptable performances compared with conventional p-i-n structures. Results, including I-V characteristics and spectral responsivity, are addressed in this thesis.

    第一章 簡介 * 1-1 研究背景 1 * 1-2 紫外光偵測器簡介與其種類 2 * 1-3 論文組織與架構 4 第二章 光檢測器原理 * 2-1 光偵測器照光吸收機制 6 * 2-2 光偵測器量子效率(Quantum efficiency)與 8 吸收係數(Absorption coefficient) * 2-3 暗電流機制 10 * 2-4 光偵測器之光響應度(Responsivity)與 14 偵測率(Detectivity) * 2-5 響應速度(response speed) 15 * 2-6 光偵測器之垂直入射型與邊緣入射型 16 第三章 紫外光偵測器設計與製作 * 3-1 氮化鋁鎵/氮化鎵系列p-i-n紫外光偵測器之設計與製作 *3-1-1設計動機 18 *3-1-2 p-i-n磊晶結構 22 *3-1-3 p-i-n元件製作流程 24 * 3-2 氮化鋁鎵/氮化鎵系列n-i-p紫外光偵測器之設計與製作 *3-2-1設計動機 28 *3-2-2 n-i-p磊晶結構 29 *3-1-3 n-i-p元件製作流程 31 *3-3 製程與量測儀器簡介 33 第四章 量測結果 *4-1 氮化鋁鎵/氮化鎵系列p-i-n紫外光檢測器 *4-1.1 TLM量測 36 *4-1.2 I-V Curve量測、光響應度量測與響應時間量測 *4-1.2-1.1 元件試片B5與C7之暗電流與光電流比較 38 *4-1.2-1.2 元件試片B5與C7之光響應值比較 40 *4-1.2-1.3 結語 44 *4-1.2-2.1 元件試片B5與C6之暗電流與光電流比較 45 *4-1.2-2.2 元件試片B5與C6之光響應值比較 46 *4-1.2-2.3 結語 48 *4-1.2-3.1 元件試片C6與C7之暗電流與光電流 48 *4-1.2-3.2 元件試片C6與C7之光響應值比較 49 *4-1.2-3.3 結語 50 *4-1.2-4 元件試片B5、C6與C7之響應時間比較 *4-1.2-4.1 元件試片B5之響應時間 50 *4-1.2-4.2 元件試片C7之響應時間 53 *4-1.2-4.3 元件試片C6之響應時間 54 *4-1.2-4.4 結語 55 *4-2 氮化鋁鎵/氮化鎵系列n-i-p紫外光檢測器 *4-2-1.1 元件試片B8與B5之暗電流與光電流比較 56 *4-2-1.2 元件試片B8與B5之光響應值比較 57 *4-2-1.3 結語 60 *4-2-2.1 元件試片B8與B9之暗電流與光電流比較 60 *4-2-2.2 元件試片B8與B9之光響應值比較 62 *4-2-2.3 結語 65 *4-2-3 元件試片B8與C9之響應時間比較 *4-2-3.1 元件試片B8之響應時間 65 *4-2-3.2 元件試片B9之響應時間 66 *4-2-3.3 結語 68 第五章 結論與未來展望 * 5-1 結論 70 * 5-2 未來方向 71 * 參考資料 73 圖目錄 圖2-1 p-i-n光偵測器在外加逆偏壓下之能帶圖 6 圖2-2 光偵測器照光下之光子吸收機制 7 圖2-3不同材料之量子效率相對波長關係圖 9 圖2-4 擴散電流機制 11 圖2-5 產生-復合電流機制 12 圖2-6 穿遂電流機制 13 圖2-7 光偵測器之幾何結構:(a)垂直入射型(2)邊緣入射型 17 圖3-1 傳統p-i-n氮化鎵光偵測器 18 圖3-2 具有低溫成長氮化鎵(LT-GaN)層之PIN氮化鎵光偵測器 21 圖3-3 XRD spectra of HT-GaN and LT-GaN 21 圖3-4 具有低溫成長氮化鎵(LT-GaN)層之PIN氮化鎵光 22 偵測器於加大電場操作下之電場分佈改變圖 圖 3-5 傳統p-i-n光偵測器(B5) 23 圖 3-6 具有一層LT-GaN之p-i-n光偵測器(C7) 23 圖 3-7 4 pairs(LT-GaN/u-GaN)構成之p-i-n光偵測器(C6) 24 圖3-8 乾蝕刻硬遮罩製程剖面圖與OM上視圖 25 圖3-9 主動區蝕刻製程剖面圖與OM上視圖 26 圖3-10 P型歐姆接觸製程剖面圖與OM上視圖 27 圖3-11 p-i-n光偵測器製程剖面圖與OM上視圖 28 圖3-12 吸收層厚度0.2μm之n-i-p光偵測器(B8) 30 圖3-13 吸收層厚度1.2μm之n-i-p光偵測器(B9) 30 圖3-14 乾蝕刻硬遮罩製程OM上視圖 31 圖3-15 主動區蝕刻製程OM上視圖 32 圖3-16 n-i-p光偵測器製程剖面圖與OM上視圖 32 圖3-17 (a)Alpha-Step量測機台 (b)機台量測原理 33 圖3-18 光響應量測系統 35 圖3-19 響應時間量測系統 35 圖4-1 TLM量測試片 36 圖4-2 p-i-n光偵測器之n型金屬電極TLM 37 量測結果:(a)B5 (b)C7 (c)C6 圖4-3 元件試片B5與C7之暗電流與光電流特性分析 39 圖4-4 LT-GaN陷阱能位障變化圖 40 圖4-5 元件試片B5與C7於零偏壓下之光響應度比較 40 圖4-6 元件試片B5隨外加逆偏壓增加之光響應度分佈 42 圖4-7 元件試片B5在未照光、入射光波長320nm與 42 360nm下之暗電流與光電流特性分析 圖4-8 元件試片C7隨外加逆偏壓增加之光響應度分佈 43 圖4-9 元件試片C7在未照光、入射光波長320nm與 43 360nm下之暗電流與光電流特性分析 圖4-10 元件試片B5與C6之暗電流與光電流特性分析 46 圖4-11 元件試片B5與C6於零偏壓下之光響應度 47 圖4-12 元件試片C6隨外加逆偏壓增加之光響應度分佈 48 圖4-13 元件試片C6與C7之暗電流與光電流特性分析 49 圖4-14 元件試片C6與C7於零偏壓下之光響應度比較 50 圖4-15 元件試片B5於不同逆向偏壓下之響應時間分佈 51 圖4-16 元件試片B5於不同逆向偏壓下之C-V量測圖 52 圖4-17 元件試片C7於不同逆向偏壓下之響應時間分佈 53 圖4-18 元件試片C6於不同逆向偏壓下之響應時間分佈 54 圖4-19 元件試片B8與B5之暗電流與光電流特性分析 57 圖4-20 元件試片B8與B5於零偏壓下之光響應度 58 圖4-21 元件試片B8隨外加逆偏壓增加之光響應度分佈 59 圖4-22 元件試片B8在未照光、入射光波長320nm與 59 360nm下之暗電流與光電流特性分析 圖4-23 元件試片B9與B8之暗電流與光電流特性分析 62 圖4-24 元件試片B9於光學顯微鏡下視圖 62 圖4-25 元件試片B9與B8於零偏壓下之光響應度 63 圖4-26 元件試片B9隨外加逆偏壓增加之光響應度分佈 64 圖4-27 元件試片B9在未照光、入射光波長320nm與 64 360nm下之暗電流與光電流特性分析 圖4-28 元件試片B8於不同逆向偏壓下之響應時間分佈 65 圖4-29 元件試片B9於不同逆向偏壓下之響應時間分佈 66 圖4-30 元件試片B9於不同逆向偏壓下之C-V量測圖 67 表目錄 表4-1 p-i-n紫外光偵測器之n型歐姆接觸電阻值 38 表4-2 元件試片B5於不同逆向偏壓下之半高寬與下降時間 51 表4-3 元件試片C7於不同逆向偏壓下之半高寬與下降時間 53 表4-4 元件試片C6於不同逆向偏壓下之半高寬與下降時間 54 表4-5 元件試片B5、C6與C7於零偏壓下之半高寬與下降 55 時間 表4-6 元件試片B8於不同逆向偏壓下之半高寬與下降時間 66 表4-7 元件試片B9於不同逆向偏壓下之半高寬與下降時間 67 表4-8 元件試片B5、B8與B9於零偏壓下之半高寬與下降 68 時間

    [1] J. I. Pankove, “Perspective on gallium nitride,” in Proc. Mater. Res. Soc., vol. 162, May 1990, pp. 515-519.
    [2] M. S. Shur, “GaN Based Transistors for High Power Applications”,
    Solid-State Electronics, Vol. 42, pp. 2131 (1998)
    [3] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm,
    and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/
    GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.
    65, pp. 1121 (1994)
    [4] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.
    J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.
    Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C
    GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J.
    Nitride Semicond. Res. Vol. 3, 41 (1998)
    [5] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal
    semiconductor field effect transistor based on single crystal GaN”,
    Appl. Phys. Lett. Vol. 62, pp. 1786 (1993)
    [6] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci.
    Technol. Vol. 14, pp. R27 (1999)
    [7] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.
    Bhattarai, “Schottky barrier photodetector based on Mg-doped
    p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp. 2455 (1993)
    [8] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F.
    Hochedez, “Assessment of GaN metal-semiconductor-metal
    photodiodes for high-energy ultraviolet photodetection“, Appl. Phys.
    Lett. Vol. 80, pp. 3198 (2000)
    [9] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame,
    L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based
    on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp.
    2917 (1992)
    [10] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout,
    P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n
    junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, June 1998.
    [11] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini,
    S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance
    (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally
    epitaxially overgrown GaN,” Appl. Phys. Lett., vol. 75, pp. 247-249, July 1999.
    [12] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.
    Razeghi, “High quality visible-blind algan p–i–n photodiodes,” Appl.
    Phys. Lett., vol. 74, pp. 1171-1173, Feb. 1999.
    [13] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.
    Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet
    photodetectors,” Appl. Phys. Lett., vol. 71, pp. 2334-2336, Oct. 1997.
    [14] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z.
    Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier
    detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys.
    Lett., vol. 70, pp. 2277-2279, Apr. 1997.
    [15] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN
    using thermally stimulated current and photocurrent spectroscopies and
    its application to UV detectors,” J. Cryst. Growth, vol. 170, pp. 362-362,
    Jan. 1997.
    [16] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.
    K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet
    photodetectors with transparent indium-tin-oxide Schottky contacts,”
    IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, Aug. 2001.
    [17] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.
    Diaz, and M. Razeghi, “High speed, low noise metal-semiconducror-
    metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol.
    74, pp. 762-764.
    [18] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278
    (1985)
    [19] M.Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics,
    “Current Transport in Metal-Semiconductor-Metal (MSM) structures”,
    Vol. 14, pp. 1209 (1971)
    [20] Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier
    Photodiode”, Jap. J. Appl. Phys. Vol. 31, pp. 210 (1992)
    [21]施敏,”半導體元件物理與製作技術第二版”,國立交通大學出版社
    [22] J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
    [23] S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch.3
    [24] Jasprit Singh, “Semiconductor Optoelectronics Physics and
    Technology”,Ch. 6 Semiconductor junction theory, p. 286.
    [25] G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation”,
    Ch. 5 Applications to semiconductors, p. 561.
    [26] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker,
    “Evidence For Tunneling in Reverse-Biased III-V Photodetector
    Diodes”, Appl. Phys. Lett., Vol. 36, No. 7, 1 April, 1980, p.580.
    [27] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack,
    “In0.53Ga0.47As Photodiode With Dark Current Limited by Generation-
    Recombination And tunneling”, Appl. Phys. Lett., Vol. 37, No. 3, 1
    August, 1981, p. 217.
    [28] O. Katz ,V. Garber, B. Meyler, G. Bahir, and J. Salzman , “Anisotropy in
    detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and
    vertical geometry”, Appl. Phys. Lett., Vol.80, No. 3, 21 January, 2002, p.
    347.
    [29] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE
    Trans.Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [30] J.E. Bowers and C. A. Burrus, Jr. “Ultrawide-band long-wavelength p-i-n
    photodetector”, J. Lightwave Technol., vol. LT-5, pp.1339-1350, 1987.
    [31]許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工
    程學研究所博士論文(2001)
    [32] T.K. Ko, S.J. Chang, Y.K.Su, M.L. Lee, C.S. Chang, Y.C. Lin, S.C. She,
    J.K.Sheu, W.S.Chen, C.F.Shen ,”AlGaN-GaN Schottky-barrier
    photodetectors with LT GaN cap layers”, Journal of Crystal Growth,
    Volume 283, Issues 1-2, 15 September 2005, Pages 68-71.
    [33] J. K. Sheu and G. C. Chi ,”The doping process and dopant characteristics
    of GaN”, J. Phys. A 14, R657 2002.
    [34] D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K.
    Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, and R. D. Dupuis, “Back illuminated AlGaN solar-blind photodetectors” ,Appl. Phys. Lett. 77, 1900 2000.
    [35] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C.
    Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-
    Temperature -Grown GaAs-Based Photodetectors Around 1.3-μm
    Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16,
    pp.242-244, Jan., 2004.
    [36] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E.
    Bowers, “Electron relaxation and transport dynamics in low-
    temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
    [37] C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C.
    H. Kuo, and Y. Z. Chiou,” The Thickness Effect of p-AlGaN Blocking
    Layer in UV-A Bandpass Photodetectors”, IEEE Photon. Technol. Lett.,
    Volume 17, Issue 10, Oct. 2005 Page(s):2161 – 2163.
    [38] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck,S. P. DenBaars, and U. K. Mishra,” Electrical characterization of GaN p-n junctions with and without threading dislocations” ,Appl. Phys. Lett. 73, 975 1998.

    下載圖示 校內:2008-08-02公開
    校外:2008-08-02公開
    QR CODE