| 研究生: |
黃映瑄 Huang, Ying-Hsuan |
|---|---|
| 論文名稱: |
草生栽培與生物炭施用對麻豆文旦園土壤碳匯與微生物相的影響 Effects of Sod Culture and Biochar Application on Soil Carbon Sequestration and Microbiome in Madou Pomelo Orchard |
| 指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences and Microbiology |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 草生栽培 、生物炭 、土壤碳匯 、微生物相 |
| 外文關鍵詞: | Sod culture, Biochar, Soil carbon sequestration, Microbiome |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
草生栽培有助於提升土壤微生物多樣性與碳匯,但其碳匯效益可能因植物生長與殘體分解較快,使其固碳效益僅止於短期。相對地,生物炭之半衰期長達數百至數千年,能將碳素穩定固存於土壤中,相較於草生栽培具有長期碳匯效益。為響應農業淨零排放政策並探討永續耕作對果園生態系之影響,本研究旨在探討草生栽培結合生物炭管理模式,對台灣文旦 (Citrus grandis) 果園土壤物化性質、微生物群落結構及氮循環功能之綜合效應。本試驗於台南麻豆文旦果園進行,採隨機完全區集設計 (RCBD) ,設置四種處理:清耕對照 (CTCK) 、清耕添加生物炭 (CTBC) 、草生對照 (SCCK) 及草生添加生物炭 (SCBC) 。針對不同季節 (2023 秋、 2024 春、 2024 秋) 採集土壤樣本,測定其物化性質、土壤碳匯和果實品質,並利用霰彈槍總體基因體定序技術 (Shotgun metagenomic sequencing) 分析土壤微生物相,以解析微生物群落結構與氮循環功能基因。研究結果顯示,在果實品質與土壤性質方面,草生栽培與生物炭處理與對照組間均未達統計顯著差異,此結果推測為試驗施用的生物炭劑量較低,且土壤既有肥力較高。然而,草生栽培與生物炭可能具有緩衝環境逆境的潛力。在微生物群落結構方面,非度量多維度分析 (NMDS) 顯示微生物群落結構呈現季節性變化,且草生與清耕、生物炭施用與否都造成菌相差異。在氮循環功能基因方面,清耕環境篩選出對環境變動敏感且具 N2O 排放潛力的 nirK 型菌;反之,草生栽培則促進了適應穩定環境的 nirS 型菌群發展。
While sod culture can enhance soil microbial diversity and soil carbon sinks, its carbon sequestration benefits may be limited to the short term due to the rapid growth and turnover of vegetative matter. In contrast, biochar, with a half-life ranging from hundreds to thousands of years, offers long-term carbon sequestration potential compared to sod culture by stably retaining carbon within the soil. The experiment was conducted in a Madou pomelo orchard in Tainan using a Randomized Complete Block Design (RCBD) with four treatments: clean tillage without biochar (CTCK), clean tillage with biochar (CTBC), sod culture without biochar (SCCK), and sod culture with biochar (SCBC). Soil samples collected across different seasons (autumn 2023, spring 2024, and autumn 2024) were analyzed for physicochemical properties, soil carbon stock, and fruit quality. Additionally, shotgun metagenomic sequencing was employed to analyze the soil microbiome and resolve microbial community structures and nitrogen cycling functional genes. The results indicated no statistically significant differences in fruit quality or soil properties among the sod culture and biochar treatments. This outcome is attributed to the relatively low dosage of biochar applied in the experiment and the high existing fertility of the orchard soil. However, the results suggest that sod culture and biochar may provide buffering effects against environmental stress. Regarding microbial community structure, Non-metric Multidimensional Scaling (NMDS) analysis revealed that the community structure exhibited distinct seasonal dynamics, with significant differences in the microbiome driven by ground cover management and biochar application. In terms of nitrogen cycling functional genes, the clean tillage environment selected for nirK-type bacteria, which are sensitive to environmental fluctuations and possess a higher potential for N2O emissions. Conversely, sod culture promoted the development of nirS-type bacterial communities adapted to stable environments.
Bobo Wu, Peng Wang, Adam T. Devlin, Shengsheng Xiao, Wang Shu, Hua Zhang and Mingjun Ding. (2021). Influence of Soil and Water Conservation Measures on Soil Microbial Communities in a Citrus Orchard of Southeast China. Microorganisms, 9, 319.
Bruno Glaser & Jago Jonathan Birk. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de I´ndio). Geochimica et Cosmochimica Acta, 82, 39-51.
Chaotang Lei, Tao Lu, Haifeng Qian & Yuxue Liu. (2023).Machine learning models reveal how biochar amendment affects soil microbial communities. Biochar, 5, 89.
Daniel R. H. Graf, Christopher M. Jones, Sara Hallin. (2014). Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions. PLOS ONE, 9(12).
Debo He, Han Ma, Dongni Hu , Xiaoguo Wang, Zhixin Dong and Bo Zhu. (2024). Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. Journal of Environmental Management, 371, 123147.
Guan Guan, Si Zhang, Tianyang He, Fupeng Guo & Jing Zhu. (2024). Sod Culture Treatments Positively Affect Soil Fungal Diversity, Soil Enzyme Activities, and Nutrient Uptake in Navel Orange Orchards. Journal of Soil Science and Plant Nutrition, 24, 5130 – 5143.
Hardy Schulz & Bruno Glaser. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Z. Journal of Plant Nutrition and Soi Sciencel, 175, 410-422.
Hardy Schulz, Gerald Dunst and Bruno Glaser. (2014). No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment. Agronomy, 4, 34-51.
Jason M. Smith, Andrew Ogram. (2008). Genetic and Functional Variation in Denitrifier Populations along a Short-Term Restoration Chronosequence. Applied and Environmental Microbiology, 74.
Jing Ren, Fuduo Li & Changbin Yin. (2023). Orchard grass safeguards sustainable development of fruit industry in China. Journal of Cleaner Production, 382, 135291.
Johannes Lehmann, Annette Cowie, Caroline A. Masiello, Claudia Kammann, Dominic Woolf, James E. Amonette, Maria L. Cayuela, Marta Camps-Arbestain & Thea Whitman. (2021). Biochar in climate change mitigation. Nature Geoscience 14, 883 – 892.
Laurent Philippot, Claire Chenu, Andreas Kappler, Matthias C. Rillig & Noah Fierer. (2024). The interplay between microbial communities and soil properties. Nature reviews microbiology, 22, 226 – 239.
Mahsa Harirforoush, Mahmoud Shavandi, Mohammad Ali Amoozegar, Parvaneh Saffarian, Shabnam Hasrak. (2024). Molecular identification of methane-consuming bacteria in the Persian Gulf: a study for microbial gas exploration. Microbiological Chemistry and Geomicrobiology, 15.
Maria Chuvochina, Aaron J Mussig, Pierre-Alain Chaumeil, Adam Skarshewski, Christian Rinke, Donovan H Parks, Philip Hugenholtz. (2023). Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes, FEMS Microbiology Letters, 370, fnad071.
Melina Kerou, Ricardo J. Eloy Alves, Christa Schleper. (2016). Nitrososphaeria. Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons.
Michaela Stieglmeier, Andreas Klingl, Ricardo J. E. Alves, Simon K.-M. R. Rittmann, Michael Melcher, Nikolaus Leisch and Christa Schleper. (2014). Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. International journal of systematic and evolutionary microbiology, 64.
Quan Yuan, Pengfei Liu, Yahai Lu. (2012). Differential responses of nirK- and nirS-carrying bacteria to denitrifying conditions in the anoxic rice field soil. Environmental Microbiology Reports, 4, 113-122.
Santanu Bakshi, Chumki Banik, David A. Laird, Ryan Smith and Robert C. Brown. (2021). Enhancing Biochar as Scaffolding for Slow Release of Nitrogen Fertilizer. ACS Sustainable Chemistry & Engineering, 9, 24.
Taishan Ran, Juan Li, Hongkai Liao, Yuxin Zhao, Guomei Yang, Jian Long. (2023). Effects of biochar amendment on bacterial communities and their function predictions in a microplastic-contaminated Capsicum annuum L. soil. Environmental Technology & Innovation, 31,103174.
Wei Shi, Yanyan Ju, Rongjun Bian, Lianqing Li, Stephen Joseph, David R.G. Mitchel, Paul Munroe, Sarasadat Taherymoosavi and Genxing Pan. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of The Total Environment, 701,134424.
Wei Yang, Ruxin Zhang, Yixuan Yang, Wentao Ji, Xiaomin Zhang, Dongliang Zhang, Liping Wang and Zhongyi Qu. (2024). Evaluation of net carbon sequestration and ecological benefits from single biochar-incorporated sorghum farmland systems in saline-alkali areas of Inner Mongolia, China. Journal of Environmental Management, 351, 119979.
Xu Yang, Bangchu Gong, Cuiyu Liu, Yanpeng Wang and Yang Xu. (2024). Effects of Long-Term Sod Culture Management on Soil Fertility, Enzyme Activities, Soil Microorganisms, and Fruit Yield and Quality in “ Jiro ” Sweet Persimmon Orchard. Plants, 13(11), 1573.
Xuhui Luo, Ming Kuang Wang, Guiping Hu, Boqi Weng. (2019). Seasonal Change in Microbial Diversity and Its Relationship with Soil Chemical Properties in an Orchard. PLOS ONE, 14, 12
Ya-bo Jin, Zheng Fang & Xin-bin Zhou. (2022). Variation of soil bacterial communities in a chronosequence of citrus orchard. Annals of Microbiology, 72, 21.
Yang Ding, Yunguo Liu, Shaobo Liu, Zhongwu Li, Xiaofei Tan, Xixian Huang,Guangming Zeng, Lu Zhou & Bohong Zheng. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 36.
Yang Zhang, Zifu Li and Ibrahim Babatunde Mahmood. (2015). Effects of Corn Cob Produced Biochars on Urea Recovery from Human Urine and Their Application as Soil Conditioners. Clean Soil Air Water, 43, 81167-1173.
Yichao Shi, Roger Lalande, Chantal Hamel, Noura Ziadi, Bernard Gagnon & Zhengyi Hu. (2013).Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biology and Fertility of Soils, 49, 803 – 818.
Yongfu Li, Shuaidong Hu, Junhui Chen, Karin M ü ller, Yongchun Li, Weijun Fu, Ziwen Lin & Hailong Wang. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments,18, 546 – 563.
Zihao Duan, Chang Chen, Chunlan Ni, Juan Xiong, Zhen Wang, Junxiong Cai, Wenfeng Tan. (2023). How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. Journal of Hazardous Materials, 448, 130939.
成允聖和陳財輝. (2018). 生物炭於林業之應用與展望. 林業研究專訊, 25, 58-60.
陳溪潭. (2000). 台灣柚類品種果實特性介紹. 台南區農業專訊, 33, 8-12.
黃文益、張繼中和廖勁穎.(2012). 果園草生栽培對土壤理化及生物性質等的影響.臺東區農業專訊,82, 12-15.
蔡呈奇. (2017). 什麼是生物炭(Biochar). 國立宜蘭大學農業推廣季刊, 79.