簡易檢索 / 詳目顯示

研究生: 蔡坤宏
Tsai, Kun-Hung
論文名稱: 利用金屬輔助化學蝕刻控制矽奈米線之幾何結構以應用於混合型太陽電池
Study of geometrically controlled silicon nanowires made by metal-assisted chemical etching for organic/inorganic hybrid solar cells
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 混合型太陽能電池奈米球微影術金屬輔助化學蝕刻矽奈米線
外文關鍵詞: Hybrid solar cells, Nanosphere lithography, Metal-assisted chemical etching, Silicon nanowires
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能在再生能源中有著不可或缺的地位,太陽每天照射到地球的能量足以供應全球的電力需求,而太陽能電池能有效的將太陽光能量轉換為電能,至今已發展出轉換效率高於45%之太陽能電池,然而成本高昂以及製作過程複雜依舊是無法普及市場的主因,因此本研究以p-type有機半導體材料PEDOT:PSS與n-type矽奈米線所製作的混合型太陽能電池能有效降低製作成本,且能通過簡單的旋轉塗佈製程形成p-n異質接面,並探討n-type矽奈米線結構對於元件表現的影響,我們運用奈米球微影術作為遮罩定位奈米線的直徑與間距大小,後結合簡單操作、反應快速的金屬輔助化學蝕刻法得到奈米線陣列結構,在奈米線密度較高的情況下,其光學平均反射率較低,異質接面的面積為影響效率的主要因素,直徑120 nm且為間距180 nm的PEDOT:PSS覆蓋率大幅改善,其短路電流密度提升至33.6 mA/cm^2且光轉換效率可達10.91%,而在奈米線密度較低的陣列結構,其光學反射率因直徑與間距大小改變而差異甚大,直徑420 nm且間距為180 nm的奈米線陣列的短路電流光轉換效率為10.30%,最後本研究探討奈米線形貌改變對於混合太陽能電池之表現比較,藉由提高氫氟酸濃度與過氧化氫濃度的比例而使N(110)蝕刻方向往<100>進而得到傾斜奈米線陣列,後我們將此結構應用於混合太陽能電池,與垂直奈米線陣列結構相比,其效率提升了12%且短路電流密度可達35.24 mA/cm^2、填充因子增加至63.4%,證明傾斜奈米線結構對於混合型太陽能電池元件有更佳的表現。

    Due to energy demand increasing rapidly in recent twenty years, solar energy is a promising alternative energy because of being a clean and abundant energy source. Hybrid solar cells combining the advantages of organic and inorganic materials is a cost-effective method to harvest solar energy. In this study, n-type silicon nanowire-based solar cells coated with p-type conductive polymer PEDOT:PSS presents that power conversion efficiency is greatly improved compared with planar silicon-based cells. Large-scale and well-aligned silicon nanowire arrays are successfully fabricated by nanosphere lithography combined with metal-assisted chemical etching. Moreover, the diameter and spacing of silicon nanowires can be controlled by tuning the reactive ion etching time. In addition, we investigate the optical properties of silicon nanowires with various diameters and spacing, revealing that the reflectance is dramatically reduced as diameter increases and spacing decreases. Furthermore, we demonstrate that the orientation of the silicon nanowires is possible to be tuned by enhancing the ratio of hydrofluoric acid and hydroperoxide concentration up to 17.63 or adding IPA into etchant. Finally, we compare the influences of diameters, spacing and orientation of silicon nanowires on cell performances, indicating that slanted silicon nanowire-based hybrid solar cells have the best performance with power conversion efficiency of 12.23 %, open-circuit voltage of 0.548 V, short-circuit current density of 35.24 mA/cm^2, and fill factor of 63.4%.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 3 2.1 奈米球微影術 3 2.1.1 奈米球微影術的發展 3 2.1.2 奈米球微影術製作單層膜之方法 5 2.2 反應式離子蝕刻高分子 6 2.3 金屬輔助化學蝕刻 8 2.3.1 金屬輔助化學蝕刻的發展與原理 8 2.3.2 貴金屬沉積方法 9 2.3.3 金屬催化劑種類 11 2.3.4 金屬形貌對於蝕刻形貌的影響 12 2.4 太陽能電池介紹 13 2.4.1 太陽能電池工作原理 13 2.4.2 太陽能電池光電效率(Power conversion efficiency, PCE) 13 2.4.3 短路電流密度 (Short-circuit current density, Jsc) 14 2.4.4 寄生電阻 16 2.4.5 填充因子 (Fill Factor, FF) 16 2.4.6 開路電壓 (Open-circuit voltage, Voc) 18 2.5 混合型太陽能電池 19 2.5.1 混合型太陽能電池的優勢與設計 19 2.5.2 矽奈米線/異質接面混合型太陽能電池之優勢 20 2.5.3 PEDOT:PSS在混合型太陽能電池之優勢與改質方法 21 2.5.4 矽奈米線/PEDOT:PSS混合型太陽能電池之異質接面探討 23 第三章 實驗流程與儀器設備 26 3.1 實驗藥品與材料 26 3.2 實驗步驟與量測方法 28 3.2.1 基板清洗 28 3.2.2 聚苯乙烯奈米球單層膜的製備 28 3.2.3 大面積奈米線陣列的製備 29 3.2.4 混合型太陽能電池的製備 30 3.3 實驗儀器 30 3.3.1 精密天平 (Precision Balances) 30 3.3.2 數位型電磁加熱攪拌機 30 3.3.3 旋轉塗佈機 (Spin Coater) 30 3.3.4 超音波震盪機 (Ultrasonic Cleaner) 30 3.3.5 反應式離子蝕刻機 (Reactive Ion Etcher) 31 3.3.6 電子束蒸鍍機 (Electron Beam Evaporator) 31 3.3.7 太陽能電池I-V量測系統 32 3.3.8 高解析場發射掃描式電子顯微鏡及能量散佈光譜儀 (High Resolution Scanning Electron Microscope & Energy Dispersive Spectrometer, HR) 32 3.3.9 紫外光/可見光吸收光譜儀 (UV-Vis Instrument) 33 第四章 34 4.1 聚苯乙烯奈米球形貌分析 34 4.1.1 聚苯乙烯奈米球單層膜分析 34 4.1.2 反應式離子蝕刻對於PS奈米球的影響 36 4.2 奈米線陣列之直徑、間距與長度控制 41 4.2.1 金屬輔助化學蝕刻時間與奈米線長度之關係 41 4.2.2 反應式離子蝕刻對於奈米線直徑與間距之關係 45 4.3 Non-vertical etching之奈米線陣列結構 52 4.3.1 氫氟酸濃度與氧化劑濃度比例改變 52 4.3.2 Co-solvent-induced method 57 4.4 矽奈米線陣列結構對於反射率之影響 60 4.5 混合型太陽能電池元件分析 65 4.5.1 混合型太陽能電池設計 65 4.5.2 不同直徑與間距的奈米線陣列之混合型太陽能電池比較 67 4.5.3 傾斜奈米線陣列與垂直奈米線陣列之混合型太陽能電池之比較 75 第五章 結論 78 參考文獻 79

    1. Colson, P., C. Henrist, and R. Cloots, Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials, 2013. 2013.
    2. Haynes, C.L. and R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. 2001, ACS Publications.
    3. Denkov, N., et al., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992. 8(12): p. 3183-3190.
    4. Kralchevsky, P.A. and N.D. Denkov, Capillary forces and structuring in layers of colloid particles. Current opinion in colloid & interface science, 2001. 6(4): p. 383-401.
    5. Dimitrov, A.S. and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir, 1996. 12(5): p. 1303-1311.
    6. Nagao, D., et al., Multiformity of particle arrays assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 311(1-3): p. 26-31.
    7. Chandramohan, A., et al., Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific reports, 2017. 7: p. 40888.
    8. Rybczynski, J., U. Ebels, and M. Giersig, Large-scale, 2D arrays of magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 219(1-3): p. 1-6.
    9. RUAN, W.-d., et al., Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique. Chemical Research in Chinese Universities, 2007. 23(6): p. 712-714.
    10. Weekes, S.M., et al., Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir, 2007. 23(3): p. 1057-1060.
    11. Zhang, L. and Y. Xiong, Rapid self-assembly of submicrospheres at liquid surface by controlling evaporation and its mechanism. Journal of colloid and interface science, 2007. 306(2): p. 428-432.
    12. Nojiri, K., Dry etching technology for semiconductors. 2015: Springer.
    13. Chan, C.-M., T.-M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface science reports, 1996. 24(1-2): p. 1-54.
    14. Phan, L.T., S.M. Yoon, and M.-W. Moon, Plasma-based nanostructuring of polymers: A review. Polymers, 2017. 9(9): p. 417.
    15. Yabagi, J.A., et al., Nanofabrication process by reactive ion etching of polystyrene nanosphere on silicon surface. Journal of Science and Technology, 2017. 9(3).
    16. Ting, Y.-H., et al., Surface roughening of polystyrene and poly (methyl methacrylate) in Ar/O2 plasma etching. Polymers, 2010. 2(4): p. 649-663.
    17. Donnelly, V.M. and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050825.
    18. Akinoglu, E.M., A.J. Morfa, and M. Giersig, Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication. Langmuir, 2014. 30(41): p. 12354-12361.
    19. Huang, Z., et al., Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele. Advanced materials, 2011. 23(2): p. 285-308.
    20. Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon. Applied Physics Letters, 2000. 77(16): p. 2572-2574.
    21. Turner, D., On the mechanism of chemically etching germanium and silicon. Journal of the electrochemical Society, 1960. 107(10): p. 810.
    22. Chartier, C., S. Bastide, and C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.
    23. Peng, K., et al., Uniform, axial‐orientation alignment of one‐dimensional single‐crystal silicon nanostructure arrays. Angewandte Chemie, 2005. 117(18): p. 2797-2802.
    24. Peng, K., et al., Fabrication of single‐crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Advanced Functional Materials, 2006. 16(3): p. 387-394.
    25. Cros, A., J. Derrien, and F. Salvan, Catalytic action of gold atoms on the oxidation of Si (111) surfaces. Surface Science, 1981. 110(2): p. 471-490.
    26. Xie, T., et al., Gold‐Enhanced Low‐Temperature Oxidation of Silicon Nanowires. small, 2008. 4(1): p. 64-68.
    27. Ogata, Y.H., K. Kobayashi, and M. Motoyama, Electrochemical metal deposition on silicon. Current Opinion in Solid State and Materials Science, 2006. 10(3-4): p. 163-172.
    28. Huang, Z., H. Fang, and J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced materials, 2007. 19(5): p. 744-748.
    29. Lee, C.-L., et al., Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. Journal of materials chemistry, 2008. 18(9): p. 1015-1020.
    30. Yae, S., et al., Catalytic activity of noble metals for metal-assisted chemical etching of silicon. Nanoscale research letters, 2012. 7(1): p. 352.
    31. Cruz, S., A. Hönig-d’Orville, and J. Müller, Fabrication and optimization of porous silicon substrates for diffusion membrane applications. Journal of the Electrochemical Society, 2005. 152(6): p. C418.
    32. Fang, H., et al., Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology, 2006. 17(15): p. 3768.
    33. Neamen, D.A., Semiconductor physics and devices: basic principles. 2012: New York, NY: McGraw-Hill.
    34. Wright, M. and A. Uddin, Organic—inorganic hybrid solar cells: A comparative review. Solar energy materials and solar cells, 2012. 107: p. 87-111.
    35. Markvart, T. and L. Castañer, Principles of solar cell operation, in McEvoy's Handbook of Photovoltaics. 2018, Elsevier. p. 3-28.
    36. Brabec, C.J., et al., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials, 2001. 11(5): p. 374-380.
    37. Wang, H. and J. Wang, Hybrid Si nanocones/PEDOT: PSS solar cell. Nanoscale research letters, 2015. 10(1): p. 191.
    38. Gao, F., S. Ren, and J. Wang, The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013. 6(7): p. 2020-2040.
    39. Fan, X., et al., Recent progress in organic–inorganic hybrid solar cells. Journal of Materials Chemistry A, 2013. 1(31): p. 8694-8709.
    40. Hu, L. and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano letters, 2007. 7(11): p. 3249-3252.
    41. Song, T., S.-T. Lee, and B. Sun, Silicon nanowires for photovoltaic applications: The progress and challenge. Nano Energy, 2012. 1(5): p. 654-673.
    42. Peng, K.Q. and S.T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011. 23(2): p. 198-215.
    43. Sailor, M.J., et al., Thin films of n-Si/poly-(CH3) 3Si-cyclooctatetraene: conducting-polymer solar cells and layered structures. Science, 1990. 249(4973): p. 1146-1149.
    44. Davenas, J., et al., Silicon nanowire/P3HT hybrid solar cells: effect of the electron localization at wire nanodiameters. Energy Procedia, 2012. 31: p. 136-143.
    45. Kirchmeyer, S. and K. Reuter, Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). Journal of Materials Chemistry, 2005. 15(21): p. 2077-2088.
    46. Thomas, J.P. and K.T. Leung, Defect‐minimized PEDOT: PSS/planar‐Si solar cell with very high efficiency. Advanced Functional Materials, 2014. 24(31): p. 4978-4985.
    47. Putra, I.R., et al., Simple Cosolvent-Treated PEDOT: PSS Films on Hybrid Solar Cells With Improved Efficiency. IEEE Journal of Photovoltaics, 2020. 10(3): p. 771-776.
    48. Ouyang, J., et al., Polymer optoelectronic devices with high‐conductivity poly (3, 4‐ethylenedioxythiophene) anodes. Journal of Macromolecular Science, Part A, 2004. 41(12): p. 1497-1511.
    49. Ouyang, J., et al., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450.
    50. Vosgueritchian, M., D.J. Lipomi, and Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced functional materials, 2012. 22(2): p. 421-428.
    51. Yu, X., et al., High efficiency organic/silicon-nanowire hybrid solar cells: significance of strong inversion layer. Scientific reports, 2015. 5: p. 17371.
    52. Liang, Z., et al., Characteristics of a silicon nanowires/PEDOT: PSS heterojunction and its effect on the solar cell performance. ACS applied materials & interfaces, 2015. 7(10): p. 5830-5836.
    53. Srivastava, S.K., et al., Excellent antireflection properties of vertical silicon nanowire arrays. Solar Energy Materials and Solar Cells, 2010. 94(9): p. 1506-1511.
    54. Frühauf, J., E. Gärtner, and S. Krönert, Shape and functional elements of the bulk silicon microtechnique. 2005: Springer.
    55. Morinaga, H., M. Suyama, and T. Ohmi, Mechanism of metallic particle growth and metal‐induced pitting on Si wafer surface in wet chemical processing. Journal of the Electrochemical Society, 1994. 141(10): p. 2834.
    56. Huang, Z., et al., Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred< 100> etching directions. Nano letters, 2009. 9(7): p. 2519-2525.
    57. Peng, K., et al., Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Advanced Functional Materials, 2008. 18(19): p. 3026-3035.
    58. Peng, K., et al., Metal‐particle‐induced, highly localized site‐specific etching of Si and formation of single‐crystalline Si nanowires in aqueous fluoride solution. Chemistry–A European Journal, 2006. 12(30): p. 7942-7947.
    59. Huang, Z., et al., Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. The Journal of Physical Chemistry C, 2010. 114(24): p. 10683-10690.
    60. Kuchuk, V., I.Y. Shirokova, and E. Golikova, Physicochemical properties of water-alcohol mixtures of a homological series of lower aliphatic alcohols. Glass Physics and Chemistry, 2012. 38(5): p. 460-465.
    61. Park, J.-G., et al., Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. Journal of the Electrochemical society, 2006. 153(9): p. G811.
    62. Xu, Z., et al., Direct effect of solvent viscosity on the physical mass transfer for wavy film flow in a packed column. Industrial & Engineering Chemistry Research, 2019. 58(37): p. 17524-17539.
    63. Nagamatsu, K.A., et al., A 12% efficient silicon/PEDOT: PSS heterojunction solar cell fabricated at< 100 C. IEEE Journal of Photovoltaics, 2013. 4(1): p. 260-264.

    下載圖示 校內:2025-07-29公開
    校外:2025-07-29公開
    QR CODE