簡易檢索 / 詳目顯示

研究生: 蘇子喬
Su, Zih-Ciao
論文名稱: 群眾外包下包裹配送之多目標模式與演算法之建構與分析
A Multi-objective Model and Solution Algorithms for Parcel Delivery with Crowdsourcing
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 96
中文關鍵詞: 包裹配送多目標最佳化群眾外包HNSGA-II車輛路徑問題
外文關鍵詞: Parcel Delivery, Crowdsourcing, Multi-objective optimal problem, HNSGA-II, Salary
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子商務與物流發展,商品在配送路上面臨多種困難。例如顧客無法及時收貨,或是因為配送需求過多,專職配送人力不足無法及時配送而導致的塞倉。近年來將群眾外包應用於最後一哩路包裹配送也已被證實能為城市短途配送帶來助益。故本研究將群眾外包導入,探討運送總距離及總配送趟次追求極小化的目標。本研究建立一個數學模型深入探討當包裹在倉庫的滯留時間有限制時,透過群眾外包輔助,考量多目標下群眾外包應用於短途配送所帶來的效益。希望提供反映經營者與顧客不同需求目標情況下的企業多目標配送車輛路線問題,以利決策者進行決策。
    綜觀包裹配送在台灣市場仍屬傳統配送模式,如何有效地整合,降低運送距離與指派次數兩目標,以及減少可能產生的延遲賠償成本,都是企業界實務上所重視的問題。能否有效率進行車輛路線管理與指派,將會直接影響公司經營業績。過去有關配送車輛路線問題之研究,多以營運者面向切入,追求大量且快速配送,著重討論卡車車隊最有效率的配送路徑與人員排班機制;有的討論延遲懲罰機制;有的考慮車隊不同的組成比例,而這些都可以透過單一多目標最佳化加以求解,例如最小化營運成本或最短交貨路徑。
    本研究側重於探索多目標車輛路徑(MOVRP)問題,旨在最小化兩個目標:最小化總行駛距離和指派趟次。首先針對群眾外包的特性設計合適初始解,然後結合非支配排序遺傳算法(NSGA-II)以及不同運行策略與參數進行分析。通過分析解的多個區域來提供帕累托最優解而非單一解,這使得解在生成的所有解中做出取捨,並留下更好的精英。算法採用了帕累托概念,使其在幾個非支配的可能性或目標之間做出權衡。最後計算整體收益比較現有電商平台延遲補償的支出情況,以及導入眾包是否為企業帶來實際收益。研究結果證明,群眾外包可以為企業帶來實際效益,HNSGA-II模型能將原成本降低58%,為未來應用提供更好的策略方向。

    With the rapid development of e-commerce and logistic, the distribution of goods has encountered many difficulties. For example, warehouse congestion because of the excessive delivery demand and insufficient delivery labor. Research has proved that crowdsourcing for last-mile parcel delivery might benefit urban short-distance delivery in recent years. This study formulates a mathematical model that reflects enterprises' multiple objectives when there is a limited time for the parcel to stay at the warehouse. Thus, this study explores the benefits of crowdsourcing applied to short-distance delivery to facilitate decision-maker deciding. The stakeholders among them are the e-commerce platforms that originally had to pay delay compensation for the delay.
    In past research on distribution vehicle routing problems, most of them were operator-oriented and pursued mass and rapid distribution, focusing on the most efficient distribution routes and scheduling mechanisms for truck fleets. This study focused on minimizing two criteria: minimizing total travel distance and minimizing number of rides. The hybrid NSGA-II is employed, along with various operational strategies and parameters, to analyze the solutions.
    Finally, the study calculates salaries and compares the expenditures of existing e-commerce platforms for delayed compensation. The research results prove that the introduction of crowdsourcing can indeed bring benefits to the company. Under the large-scale road network test, the HNSGA-II model proposed in this study can reduce the original cost by 58%. Provide better strategic directions for future practical applications.

    Abstract i 摘要 ii 致謝 iii Contents iv List of Table vi List of Figure vii CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation and Background 1 1.2 Research Objectives 4 1.3 Research Flow Chart 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Parcel Delivery 7 2.1.1 Parcel Delivery in Taiwan and Other Countries 7 2.1.2 Crowdsourcing With Parcel Delivery 9 2.1.3 Matching and Assignment 11 2.2 Vehicle Routing Problem 13 2.2.1 Basic Concept of VRP 13 2.2.2 The Extended Problem of VRP 14 2.2.3 Multi-objective Vehicle Routing Problem 16 2.3 Multi-objective Optimization Approach 17 2.3.1 General Form of Multi-Objective Optimization 18 2.3.2 Multi-Objective Evolutionary Algorithms(MOEA) 19 2.3.3 Multi-objective Genetic Algorithm (GA) 20 2.4 Summary 26 CHAPTER 3 RESEARCH METHODOLOGY 28 3.1 Problem Statement and Research Assumptions 28 3.2 Research Framework 30 3.3 Model Formulation 32 3.3.1 Definition of Criteria 32 3.3.2 Definitions of Notations 34 3.3.3 Mathematical Formulation 35 3.4 Solution Algorithm 37 3.5 Salary Estimation 44 3.6 Summary 46 CHAPTER 4 EMPIRICAL EXPERIMENT 47 4.1 Experiment Design 47 4.1.1 Basic Data of Network 47 4.1.2 The Structure of HNSGA-II 49 4.2 Experiment Result of HNSGA-II in Small Scale 56 4.3 Summary 60 CHAPTER 5 EMPIRICAL STUDY 61 5.1 Experimental Design and Setup 61 5.1.1 Test of Parameter Combinations 62 5.1.2 Strategy in Crossover and Mutation Phase 63 5.1.3 Profit and Salary 68 5.1.4 Network Size 69 5.2 Result of Analysis 70 5.2.1 Sensitivity Analysis of Parameter Combinations 70 5.2.2 Sensitivity Analysis for Crossover and Mutation 73 Test Result: P1 74 Test Result: P2 76 Test Result: P3 77 Test Result : P4 79 5.2.3 Profit Estimation 81 5.2.4 Experiment with a 100-node Network: T100 82 5.3 Summary 87 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 89 6.1 Conclusions 89 6.2 Suggestions 90 REFERENCE 91

    Agatz, N., Campbell, A. M., Fleischmann, M., & Savelsbergh, M. (2008). Challenges and opportunities in attended home delivery. Operations Research/ Computer Science Interfaces Series, 43, 379–396. https://doi.org/10.1007/978-0-387-77778-8_17/COVER
    Arslan, A., Agatz, N., Kroon, L., & Zuidwijk, R. (2018). Crowdsourced Delivery—A Dynamic Pickup and Delivery Problem with Ad Hoc Drivers. Transportation Science, 53. https://doi.org/10.1287/trsc.2017.0803
    Basik, F., Gedik, B., Ferhatosmanoglu, H., & Wu, K. L. (2021). Fair Task Allocation in Crowdsourced Delivery. IEEE Transactions on Services Computing, 14(4), 1040–1053. https://doi.org/10.1109/TSC.2018.2854866
    Boysen, N., de Koster, R., & Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277(2), 396–411. https://doi.org/10.1016/J.EJOR.2018.08.023
    Chen, W., Mes, M., & Schutten, M. (2018). Multi-hop driver-parcel matching problem with time windows. Flexible Services and Manufacturing Journal, 30(3), 517–553. https://doi.org/10.1007/s10696-016-9273-3
    Choi, T. M. (2020). Innovative “Bring-Service-Near-Your-Home” operations under Corona-Virus (COVID-19/SARS-CoV-2) outbreak: Can logistics become the Messiah? Transportation Research Part E: Logistics and Transportation Review, 140, 101961. https://doi.org/10.1016/J.TRE.2020.101961
    Current, J., & Marsh, M. (1993). Multiobjective transportation network design and routing problems: Taxonomy and annotation. European Journal of Operational Research, 65(1), 4–19. https://doi.org/10.1016/0377-2217(93)90140-I
    Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Http://Dx.Doi.Org/10.1287/Mnsc.6.1.80, 6(1), 80–91. https://doi.org/10.1287/MNSC.6.1.80
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002a). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
    Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483. https://doi.org/10.1016/J.CIE.2009.05.009
    Faullant, R., Fueller, J., & Hutter, K. (2017). Fair play: Perceived fairness in crowdsourcing competitions and the customer relationship-related consequences. Management Decision, 55(9), 1924–1941. https://doi.org/10.1108/MD-02-2017-0116/FULL/PDF
    Franke, N., Keinz, P., & Klausberger, K. (2013). Does this sound like a fair deal?: Antecedents and consequences of fairness expectations in the individual’s decision to participate in firm innovation. Organization Science, 24(5), 1495–1516. https://doi.org/10.1287/ORSC.1120.0794/ASSET/IMAGES/LARGE/ORSC.1120.0794-F01.JPEG
    Ghannadpour, S. F., & Zarrabi, A. (2019). Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing. Swarm and Evolutionary Computation, 44, 728–747. https://doi.org/10.1016/J.SWEVO.2018.08.012
    Hua, Y., Liu, Q., Hao, K., & Jin, Y. (2021). A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts. IEEE/CAA Journal of Automatica Sinica, 8(2), 303–318. https://doi.org/10.1109/JAS.2021.1003817
    Jozefowiez, N., Semet, F., & Talbi, E. G. (2008). Multi-objective vehicle routing problems. European Journal of Operational Research, 189(2), 293–309. https://doi.org/10.1016/J.EJOR.2007.05.055
    Kang, Y., Lee, S., & Chung, B. Do. (2019). Learning-based logistics planning and scheduling for crowdsourced parcel delivery. Computers & Industrial Engineering, 132, 271–279. https://doi.org/10.1016/J.CIE.2019.04.044
    Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/S11042-020-10139-6/FIGURES/8
    Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007. https://doi.org/10.1016/J.RESS.2005.11.018
    Kuo, Y. F., Yen, S. T., & Chen, L. H. (2011). Online auction service failures in Taiwan: Typologies and recovery strategies. Electronic Commerce Research and Applications, 10(2), 183–193. https://doi.org/10.1016/J.ELERAP.2009.09.003
    Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/ D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302. https://doi.org/10.1109/TEVC.2008.925798
    Liao, T. H., & Keng, C. J. (2013). Online shopping delivery delay: Finding a psychological recovery strategy by online consumer experiences. Computers in Human Behavior, 29(4), 1849–1861. https://doi.org/10.1016/J.CHB.2013.03.004
    Mancini, S., & Gansterer, M. (2022). Bundle generation for last-mile delivery with occasional drivers. Omega, 108, 102582. https://doi.org/10.1016/J.OMEGA.2021.102582
    Mangiaracina, R., Perego, A., Seghezzi, A., & Tumino, A. (2019). Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: a literature review. International Journal of Physical Distribution & Logistics Management, 49(9), 901–920. https://doi.org/10.1108/IJPDLM-02-2019-0048
    Montoya-Torres, J. R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115–129. https://doi.org/10.1016/J.CIE.2014.10.029
    Perboli, G., Rosano, M., & Wei, Q. (2022). A Simulation-Optimization Approach for the Management of the On-Demand Parcel Delivery in Sharing Economy. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10570–10582. https://doi.org/10.1109/TITS.2021.3094851
    Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations Research, 34(8), 2403–2435. https://doi.org/10.1016/J.COR.2005.09.012
    Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985–2002. https://doi.org/10.1016/S0305-0548(03)00158-8
    Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects. Annals of Operations Research, 61(1), 143–164. https://doi.org/10.1007/BF02098286
    Schaffer, J. (1985). Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In Proceedings of the First Int. Conference on Genetic Algorithms, Ed. G.J.E Grefensette, J.J. Lawrence Erlbraum.
    Sitek, P., & Wikarek, J. (2019). Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using a hybrid approach. Annals of Operations Research, 273(1–2), 257–277. https://doi.org/10.1007/S10479-017-2722-X/TABLES/7
    Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221–248. https://doi.org/10.1162/EVCO.1994.2.3.221
    Srivatsa Srinivas, S., & Marathe, R. R. (2021). Moving towards “mobile warehouse”: Last-mile logistics during COVID-19 and beyond. Transportation Research Interdisciplinary Perspectives, 10, 100339. https://doi.org/10.1016/J.TRIP.2021.100339
    Tan, K. C., Lee, T. H., & Khor, E. F. (2001). Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 5(6), 565–588. https://doi.org/10.1109/4235.974840
    Tong, Y., Zhou, Z., Zeng, Y., Chen, L., & Shahabi, C. (2020). Spatial crowdsourcing: a survey. VLDB Journal, 29(1), 217–250. https://doi.org/10.1007/S00778-019-00568-7/TABLES/10
    Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics, 123(1–3), 487–512. https://doi.org/10.1016/S0166-218X(01)00351-1
    Verma, S., Pant, M., & Snasel, V. (2021). A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems. IEEE Access, 9, 57757–57791. https://doi.org/10.1109/ACCESS.2021.3070634
    Visser, J., Nemoto, T., & Browne, M. (2014). Home Delivery and the Impacts on Urban Freight Transport: A Review. Procedia - Social and Behavioral Sciences, 125, 15–27. https://doi.org/10.1016/J.SBSPRO.2014.01.1452
    Wang, F., Wang, F., Ma, X., & Liu, J. (2019). Demystifying the Crowd Intelligence in Last Mile Parcel Delivery for Smart Cities. IEEE Network, 33(2), 23–29. https://doi.org/10.1109/MNET.2019.1800228
    Wang, Y., Assogba, K., Liu, Y., Ma, X., Xu, M., & Wang, Y. (2018). Two-echelon location-routing optimization with time windows based on customer clustering. Expert Systems with Applications, 104, 244–260. https://doi.org/10.1016/J.ESWA.2018.03.018
    Wang, Y., Zhang, D., Liu, Q., Shen, F., & Lee, L. H. (2016). Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transportation Research Part E: Logistics and Transportation Review, 93, 279–293. https://doi.org/10.1016/J.TRE.2016.06.002
    Yang, K.-F., Yang, H.-W., & Chien, F.-Y. (2021). A Study to Explore the Service Quality of PChome 24h Shopping. Proceedings of the 2021 International Conference on E-Business and Mobile Commerce, 1–6. https://doi.org/10.1145/3472349.3472350

    無法下載圖示 校內:2028-08-15公開
    校外:2028-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE