| 研究生: |
林彥均 Lin, Yen-Chun |
|---|---|
| 論文名稱: |
含偶氮苯兩性雙團聯共聚物於溶液和薄膜中之構型及液晶基元之聚集型態的研究 Studies of the Morphology of Azobenzene-Containing Amphiphilic Diblock Copolymers and Aggregation of Mesogens in Solution and Films |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 偶氮苯 、自組裝 、光異構化 、薄膜 |
| 外文關鍵詞: | azobenzene, self-assembly, photoresponsive behavior, thin film |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有光異構化特性之偶氮苯單體,再以原子轉移自由基聚合法製備不同偶氮苯含量之雙團聯共聚物poly(ethylene glycol)methyl ether-block-poly(6-[4-(4’-methoxyphenylazo)phenoxy]hexylmethacrylate) (mPEG-b-PMMAzo),並研究其在不同環境中之結構與光異構化行為的變化。
mPEG-b-PMMAzo具有偶氮苯光異構化之行為,經紫外光及可見光照射後可進行可逆trans-cis-trans光異構化反應,我們探討了mPEG-b-PMMAzo在中性、選擇性溶劑與薄膜中的光異構化速率。於中性溶劑中,偶氮苯基團以速率較快的translational mechansim進行光異構化;然而,在選擇性溶劑中,因PMMAzo鏈段溶解度較差,團聯共聚物自組裝形成微胞,偶氮苯光異構化空間受到壓縮,偏向以速率較慢的rotational mechanism反應;在薄膜中,由於固體中自由體積相較於溶液中更小,以及液晶分子之間有序排列造成的立體障礙,mPEG-b-PMMAzo薄膜光異構化速率為三者之中最慢。
mPEG-b-PMMAzo在中性溶劑中為random coil結構,以non-association型態為主;在選擇性溶劑中,低偶氮苯含量之mPEG-b-PMMAzo以球狀微胞存在,造導致偶氮苯以並排的H-aggregate為主,π-π* transition之最大吸收波長藍位移,隨著偶氮苯含量增加,微胞從球狀轉變為柱狀結構;在薄膜中,mPEG-b-PMMAzo形成層狀結構,由於此微相結構與液晶相之間的超分子合作運動,薄膜中偶氮苯以頭對頭的J-aggregate聚集為主,並有紅位移現象。此外,當mPEG-b-PMMAzo處於同一環境時,若PMMAzo含量增加,偶氮苯的H-aggreagte或J-aggregate聚集型態比例亦上升。
mPEG-b-PMMAzo之熱性質經由微差熱掃描卡計與偏光光學顯微鏡觀察。隨著PMMAzo鏈段長度增加,由於液晶有序結構的存在造成mPEG結晶的限制作用,使得mPEG結晶度減少、熔融溫度與結晶溫度下降;液晶相之間的合作運動亦隨著液晶鏈段含量上升而加強,這可以穩定液晶排列,因此液晶相轉移溫度亦上升。
A series of azobenezene-containing block copolymer poly(ethylene glycol)methyl ether-block-poly(6-[4-(4’-methoxyphenylazo)phenoxy]hexylmethacryalte) (mPEG-b-PMMAzo) with various contents of azobenzene was synthesized through atom transfer radical polymerization, and was investigated the morphology and photoisomerization behavior in different enviroments. mPEG-b-PMMAzo exhibited photoisomerization behavior and the photoisomerization rate was investigated in neutral solvents, selective solvents and thin films. When dissolved in selective solvents, mPEG-b-PMMAzo self-assembled into micelles because of the poor miscibility of PMMAzo. The photoisomerization rate was slower than that in neutral solvents. Moreover, the photoisomerization rate of mPEG-b-PMMAzo in thin films was much slower than that in solution due to the even smaller free volume for azobenzene isomerization in thin films. mPEG-b-PMMAzo exhibited a random coil conformation, and chromophores were not associated in neutral solvents. By contrast, mPEG-b-PMMAzo with the low contents of PMMAzo assembled into spherical micelles when dissolved in selective solvents. The confined geometry resulted in the H-aggregated mesogens causing a blue shift. When the fraction of PMMAzo was increased, the structure of mPEG-b-PMMAzo changed from spherical micelles to cylindrical micelles. In thin films, mPEG-b-PMMAzo formed a lamellar structure resulting in the formation of J-aggregated chromophores and a red shift. The thermal properties of mPEG-b-PMMAzo were characterized by differential scanning calorimetry and polarized optical microscopy. When the chain length of PMMAzo was increased, the degree of crystallinity, melting temperature, and crystallization temperature of mPEG decreased, while the phase transition temperature of liquid crystals increased.
[1] J. Zhang, M. Zhang, K. Tang, F. Verpoort, and T. Sun, "Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis," Small, 10, 32-46, 2014.
[2] C. Ruan, K. Zeng, and C. A. Grimes, "A mass-sensitive pH sensor based on a stimuli-responsive polymer," Analytica Chimica Acta, 497, 123-131, 2003.
[3] C. Probst, C. Meichner, K. Kreger, L. Kador, C. Neuber, and H. W. Schmidt, "Athermal azobenzene-based nanoimprint lithography," Advanced Materials, 28, 2624-2628, 2016.
[4] H. Yu and T. Ikeda, "Photocontrollable liquid-crystalline actuators," Advanced Materials, 23, 2149-2180, 2011.
[5] D. Gindre, A. Boeglin, L. Mager, and D. K. Dorkenoo, "Rewritable optical data storage in azobenzene copolymers," Optical Express, 14, 9896-9901, 2006.
[6] H. Yu, T. Kobayashi, and H. Yang, "Liquid-crystalline ordering helps block copolymer self-assembly," Advanced Materials, 23, 3337-3344, 2011.
[7] R. A. Vaia and E. P. Giannelis, "Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates," Polymer, 42, 1281-1285, 2001.
[8] J. Y. T. Chong, X. Mulet, L. J. Waddington, B. J. Boyd, and C. J. Drummond, "Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers," Soft Matter, 7, 4768, 2011.
[9] A. Emoto, E. Uchida, and T. Fukuda, "Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers," Polymers, 4, 150-186, 2012.
[10] T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, "Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure," Advanced Materials, 15, 201-205, 2003.
[11] M. Kondo, Y. Yu, and T. Ikeda, "How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers?," Angewandte Chemie, 118, 1406-1410, 2006.
[12] A. Y. Rwei, W. Wang, and D. S. Kohane, "Photoresponsive nanoparticles for drug delivery," Nano Today, 10, 451-467, 2015.
[13] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, et al., "Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid," American Chemical Society, 6, 6337-6344, 2012.
[14] R. V. Castillo, M. L. Arnal, A. J. Muller, I. W. Hamley, V. Castelletto, H. Schmalz, et al., "Fractionated crystallization and fractionated melting of confined PEO microdomains in PB-b-PEO and PE-b-PEO diblock copolymers," Macromolecules, 41, 879-889, 2008.
[15] J. K. Kim, S. Y. Yang, Y. Lee, and Y. Kim, "Functional nanomaterials based on block copolymer self-assembly," Progress in Polymer Science, 35, 1325-1349, 2010.
[16] Y. Zhou, S.-k. Ahn, R. K. Lakhman, M. Gopinadhan, C. O. Osuji, and R. M. Kasi, "Tailoring crystallization behavior of PEO-based liquid crystalline block copolymers through variation in liquid crystalline content," Macromolecules, 44, 3924-3934, 2011.
[17] S. Asaoka, T. Uekusa, H. Tokimori, M. Komura, T. Iyoda, T. Yamada, et al., "Normally oriented cylindrical nanostructures in amphiphilic PEO-LC diblock copolymers films," Macromolecules, 44, 7645-7658, 2011.
[18] H. Komiyama, R. Sakai, S. Hadano, S. Asaoka, K. Kamata, T. Iyoda, et al., "Enormously wide range cylinder phase of liquid crystalline PEO-b-PMA(Az) block copolymer," Macromolecules, 47, 1777-1782, 2014.
[19] F. S. Bates, "Polymer-polymer phase behavior," Science, 251, 1991.
[20] A. K. Khandpur, S. Forster, and F. S. Bates, "Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition," Macromolecules, 28, 8796-8806, 1995.
[21] M. W. Matsen and F. S. Bates, "Unifying weak- and strong-segregation block copolymer theories," Macromolecules, 29, 1996.
[22] R. A. Segalman, "Patterning with block copolymer thin films," Materials Science and Engineering: R: Reports, 48, 191-226, 2005.
[23] Y. Tian, K. Watanabe, X. Kong, J. Abe, and T. Iyoda, "Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties," Macromolecules, 35, 3739-3747, 2002.
[24] I. W. Hamley and V. Castelletto, "Interplay between smectic ordering and microphase separation in a series of side-group liquid-crystal block copolymers," Macromolecules, 37, 4798-4807, 2004.
[25] D. Raabe, "Mesoscale simulation of spherulite growth during polymer crystallization by use of a cellular automaton," Acta Materialia, 52, 2653-2664, 2004.
[26] N. Athmouni, J. Song, F. Mighri, and S. Elkoun, "Isothermal and non-isothermal crystallization kinetics of conductive polyvinylidene fluoride/poly(ethylene terephthalate) based composites," Materials Sciences and Applications, 7, 8-19, 2016.
[27] M. L. Di Lorenzo and C. Silvestre, "Non-isothermal crystallization of polymers," Progress in Polymer Science, 24, 917-950, 1999.
[28] P. H. D Grenier, "Avrami analysis: three experimental limiting factors," Journal of Polymer Science, 18, 1655-1657, 1980.
[29] A. T. Lorenzo, M. L. Arnal, J. Albuerne, and A. J. Müller, "DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems," Polymer Testing, 26, 222-231, 2007.
[30] J. N. Hay, "Application of the modified Avrami equations to polymer crystallization kinetics," British Polymer Journal, 3, 1971.
[31] A. Jeziorny, "Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.," Polymer, 19, 1978.
[32] M. Liu, Q. Zhao, Y. Wang, C. Zhang, Z. Mo, and S. Cao, "Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212," Polymer, 44, 2537-2545, 2003.
[33] L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, et al., "Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallizaion in an ordered lamellar phase of PEO-b-PS diblock copolymer," Polymer, 42, 5829-5839, 2001.
[34] E. Merino and M. Ribagorda, "Control over molecular motion using the cis-trans photoisomerization of the azo group," Beilstein Journal Organic Chemistry, 8, 1071-1090, 2012.
[35] S. Ma, Y. Kuwahara, H. Nagano, N. Hatae, T. Ogata, S. Kim, et al., "Photo-controlled manipulation of micrometer-scale objects on polyethylene glycol thin films with azobenzene compounds," Molecular Crystals and Liquid Crystals, 601, 126-133, 2014.
[36] W. Freyer, D. Brete, R. Schmidt, C. Gahl, R. Carley, and M. Weinelt, "Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments," Journal of Photochemistry and Photobiology A: Chemistry, 204, 102-109, 2009.
[37] V. Chandrasekaran, H. Jacob, F. Petersen, K. Kathirvel, F. Tuczek, and T. K. Lindhorst, "Synthesis and surface-spectroscopic characterization of photoisomerizable glyco-SAMs on Au(111)," Chemistry: A European Journal, 20, 8744-52, 2014.
[38] M. Sato, T. Kinoshita, A. Takizawa, and Y. Tsujita, "Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains," Macromolecules, 21, 1612-1616, 1988.
[39] G. S. Hartley, "The cis-form of azobenzene and the velocity of the thermal cis→ trans-conversion of azobenzene and some derivates," Journal of the Chemical Society, 633-642, 1938.
[40] Z. F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto, and A. Fujushima, "Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film," The Journal of Physical Chemistry, 96, 1875-1880, 1992.
[41] M. Shimizu and T. Hiyama, "Organic fluorophores exhibiting highly efficient photoluminescence in the solid state," Chemistry- An Asian Journal, 5, 1516-1531, 2010.
[42] H. Menzel and B. Weichart, "Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir-Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length," Langmuir, 10, 1926-1933, 1994.
[43] C. D. Eisenbach, "Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers," Makromolekulare Chemie, 179, 2489-2506, 1978.
[44] X. Tong, L. Cui, and Y. Zhao, "Confinement effects on photoalignment, photochemical phase transition and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers," Macromolecules, 37, 3101-3112, 2004.
[45] M. J. Fasolka and A. M. Mayes, "Block copolymer thin films: physics and applications," Annual Review of Materials Research, 31, 323-355, 2001.
[46] H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced alignment of nanocylinders by supramolecular cooperative motions," Journal of the American Chemical Society, 128, 11010-11011, 2006.
[47] K. Aoki, T. Iwata, S. Nagano, and T. Seki, "Light-directed anisotropic reorientation of mesopatterns in block copolymer monolayers," Macromolecular Chemistry and Physics, 211, 2484-2489, 2010.
[48] M. Sano, S. Nakamura, M. Hara, S. Nagano, Y. Shinohara, Y. Amemiya, et al., "Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films," Macromolecules, 47, 7178-7186, 2014.
[49] S. Mura, J. Nicolas, and P. Couvreur, "Stimuli-responsive nanocarriers for drug delivery," Nature Materials, 12, 991-1003, 2013.
[50] R. Weissleder, "A clear vision for in vivo imaging," Nature Biotechnology, 19, 316-317, 2001.
[51] V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnology, 23, 313-320, 2005.
[52] Z. Xiao, C. Ji, J. Shi, E. M. Pridgen, J. Frieder, J. Wu, et al., "DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy," Angewandte Chemie International Edition, 51, 11853-11857, 2012.
[53] C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect," Polymer, 21, 1175-1179, 1980.
[54] M. Z. Alam, A. Shibahara, T. Ogata, and S. Kurihara, "Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties," Polymer, 52, 3696-3703, 2011.
[55] X. He, H. Zhang, and X. Wang, "Synthesis of side chain liquid crystal-coil diblock copolymers with p-methoxyazobenzene side groups by atom-transfer radical polymerization," Polymer Journal, 34, 523-528, 2002.
[56] H. Yu, T. Kobayashi, and G.-H. Hu, "Photocontrolled microphase separation in a nematic liquid-crystalline diblock copolymer," Polymer, 52, 1554-1561, 2011.
[57] M. Miyazaki, A. Fuji, T. Ebata, and N. Mikami, "Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages," Science, 304, 1134-1138, 2004.
[58] K. A. Davis and K. Matyjaszewski, "Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers," Macromolecular, 33, 4039-4047, 2000.
[59] V. Bertolasi, P. Gilli, V. Ferretti, and G. Gilli, "Intramolecular O-H···O hydrogen bonds assisted by resonance. Correlation between crystallographic data and 1H NMR chemical shifts," Journal of the Chemical Society, 2, 945-952, 1997.
[60] L. Zhang, J. Xia, Q. Li, X. Li, and S. Wang, "Fast synthesis of hydrazine and azo derivatives by oxidation of rare-earth-metal−nitrogen bonds," Organometallics, 30, 375-378, 2011.
[61] G. Mao, J. Wang, S. R. Cingman, C. K. Ober, J. T. Chen, and E. L. Thomas, "Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups," Macromolecules, 30, 2556-2567, 1997.
[62] B. Nie, J. Stutzman, and A. Xie, "A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues," Biophysical Journal, 88, 2833-2847, Apr 2005.
[63] E. Stefanis and C. Panayiotou, "Prediction of Hansen solubility parameters with a new group-contribution method," International Journal of Thermophysics, 29, 568-585, 2008.
[64] C. M. Hansen and A. L. Smith, "Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers," Carbon, 42, 1591-1597, 2004.
[65] J. Gao, S. Wu, and M. A. Rogers, "Harnessing Hansen solubility parameters to predict organogel formation," Journal of Materials Chemistry, 22, 12651-12658, 2012.
[66] N. Tamai and H. Miyasaka, "Ultrafast dynamics of photochromic systems," Chemical Reviews, 100, 1875-1890, 2000.
[67] M. Haro, B. Giner, I. Gaso´n, F. l. M. Royo, and M. C. Lo´pez, "Isomerization behavior of an azopolymer in terms of the Langmuir-Blodgett film thickness and the transference surface pressure," Macromolecules, 40, 2058-2069, 2007.
[68] N. Bohm, A. Materny, and W. Kiefer, "Spectroscopic investigation of the thermal cis-trans isomerization of disperse red 1 in hybrid polymers," Macromolecules, 29, 2599-2604, 1996.
[69] G. Wang, X. Tong, and a. Y. Zhao, "Preparation of azobenzene-containing amphiphlic diblock copolymers for light-responsive micellar aggregates," Macromolecules, 37, 8911-8917, 2004.
[70] B. M. Discher, D. A. Hammer, F. S. Bates, and D. E. Discher, "Polymer vesicels in various media," Current Opinion in Colliod & Interface Science, 5, 125-131, 2000.
[71] E. Minatti, P. Viville, R. Borsali, M. Schappacher, A. Deffieux, and R. Lazzaroni, "Micellar morphological changes promoted by cyclization of PS-b-PI copolymer: DLS and AFM experiments," Macromolecules, 36, 4125-4133, 2003.
[72] T. N. Khan and R. H. Mobbs, "Synthesis and colloidal behaviour of a polystyrene-b-poly(ethylene oxide) block copolymer," European Polymer Journal, 23, 191-194, 1987.
[73] W. Brown, R. Rymden, J. Van Stam, M. Almgren, and G. Svensk, "Static and dynamic properties of nonionic amphiphile micelles: Triton X-100 in aqueous solution," The Journal of Physical Chemistry, 93, 2512-2519, 1989.
[74] S. B. La, T. Okano, and K. Kazunori, "Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(b-benzyl L-aspartate) block copolymer micelles," Journal of Pharmaceutical Sciences, 85, 85-90, 1996.
[75] B. Hammouda, D. L. Ho, and S. Kline, "Insight into clustering in poly(ethylene oxide) solutions," Macromolecules, 37, 6932-6937, 2004.
[76] F. Kohori, M. Yokoyama, K. Sakai, and T. Okano, "Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems," Journal of Controlled Release, 78, 155-163, 2002.
[77] A. O. Moughton and R. K. O'Reilly, "Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer," Chemical Communications, 46, 1091-1093, 2010.
[78] A. Blanazs, S. P. Armes, and A. J. Ryan, "Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications," Macromolecular Rapid Communications, 30, 267-77, 2009.
[79] I. Mita, K. Horie, and K. Hirao, "Photochemistry in polymer solids. 9. Photoisomerization azobenzene in a polycarbonate film," Macromolecules, 22, 558-563, 1989.
[80] H. Yu, Y. Naka, A. Shishido, and T. Ikeda, "Well-definded liquid-crystalline diblock copolymers with an azobenzene moiety: synthesis, photoinduced alignment and their holographic properties," Marcromolecules, 41, 7959-7966, 2008.
[81] Y. Kong and J. N. Hay, "The measurement of the crystallinity of polymers by DSC," Polymer, 43, 3873-3878, 2002.
[82] L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, and R. P. Quirk, "Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer," Journal of the American Chemical Society, 122, 5957-5967, 2000.
[83] Z. Shi, D. Chen, H. Lu, B. Wu, J. Ma, R. Cheng, et al., "Self-assembled hierarchical structure evolution of azobenzene-containing linear-dendritic liquid crystalline block copolymers," Soft Matter, 8, 6174, 2012.
[84] Z. Ye and X. Zhao, "Phase imaging atomic force microscopy in the characterization of biomaterials," Journal of Microscopy, 238, 27-35, 2010.
[85] H. Yu and T. Kobayashi, "Fabrication of stable nanocylinder arrays in highly birefringent films of an amphiphilic liquid-crystalline diblock copolymer," ACS Applied Materials & Interfaces, 1, 2755-2762, 2009.
[86] M. A. Chavis, D. M. Smilgies, U. B. Wiesner, and C. K. Ober, "Widely tunable morphologies in block copolymer thin films through solvent vapor annealing using mixtures of selective solvents," Advanced Functional Materials, 25, 3057-3065, 2015.