簡易檢索 / 詳目顯示

研究生: 洪任良
Hong, Ren-Liang
論文名稱: 新一代硫磷四芽配位基及其金屬化合物的開發: 鎘錯化合物及鉛錯化合物的合成鑑定
Development of tetradentate thiolatophosphine ligands and their metal complexes: Syntheses and Characterization of cadmium(II) and lead(II) complexes.
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 磷硫配位基鎘硫錯合物鉛硫錯合物
外文關鍵詞: thiolatophosphine ligands, cadmium(II) complexe, lead(II) complexes
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物方面,多硫配位環境在許多金屬蛋白質,例如固氮酵素,氫化酵素,CO脫氫酵素以及金屬硫蛋白的活化中心中皆扮演著關鍵的角色。因此,化學家藉由合成多硫配位環境的生物模擬金屬錯合物以瞭解金屬與多硫配位之間的基礎化學。我們實驗室也根據這跟研究背景發展硫金屬化合物。在這個研究中,我們著重於設計及發展一系列新的四芽硫磷配位基,並合成一系列其金屬錯合物。
    在此研究的第一部分中,我們根據取代基的不同,設計以及合成四芽硫磷配位基H2[P2S2’] 以及H2[P2S2”] 並且經由X光單晶繞射儀、1H and 31P NMR核磁共振光譜儀以及電噴灑游離質譜來分析與鑑定。
    在第二部分,我們合成了三種以P2S2衍生物為配位基的金屬錯化合物,Pb(P2S2”) (1)、[Pb(P2S2”)]2[Pb2(P2S2”)2] (2)以及[Cd(P2S2”)]2 (3),並且透過X光單晶繞射儀及光譜分析對其鑑定。錯化合物1為單鉛錯化合物包含一個P2S2”配位基組成。化合物2由單鉛錯化合物以及其二聚體共結晶組成,且單鉛錯合物及其二聚體在不同溶劑條件下不會相互轉換。錯化合物3是雙鎘錯合物包含兩個P2S2”配位基所組成。

    Metal centers with sulfur-rich coordination sphere are present in many metalloproteins, such as nitrogenase, hydrogenase, CO dehydrogenase and Metallothioneins. In order to understand the fundamental chemistry of metal sulfur interaction, many efforts have been devoted into develop biomimetic metal complexes that have sulfur ligation environment. Based on this motivation, we have been studying the chemistry of metal thiolate complexes in our laboratory. At this particular work, we developed new type of tetradentate dithiolato-diphosphine ligands as well as their corresponding metal complexes.
    In the first half of this thesis, the syntheses of these dithiolato-diphosphine ligands with different substitutions, H2[P2S2’] and H2[P2S2”], are described. A series of physical methods such as X-ray crystallography, 1H and 31P NMR spectroscopies and ESI-mass analysis have been applied to characterize the obtained products.
    In the second half of this thesis, three metal complexes of P2S2 derivatives Pb(P2S2”) (1), [Pb(P2S2”)]2[Pb2(P2S2”)2] (2) and [Cd(P2S2”)]2 (3) have been synthesized and characterize by X-ray crystallography and spectroscopies. Complex 1 is a monolead(II) species binding with a P2S2” ligand. Compound 2 contains a monolead(II) unit and its dimeric unit that co-crystallize to form the crystalline solid. The monomeric and dimeric forms are not exchangeable in the solution state according to the solvent- variable spectroscopic studies. Complex 3 is a dicadmium(II) species binding with two P2S2” ligands.

    Table of contents Abstract I 中文摘要 II 誌謝 III Abbreviations IV Table of contents V List of Figures VII List of Tables X Chapter 1. Introduction 1 1-1.Sulfur-rich coordinated sphere in biological system. 1 1-2 Example of hybrid N/S ligand system and related metal complexes 3 1-3 Example of hybrid P/S ligand system and related metal complexes. 4 1-4.Biomimetic complexes of Cd-Metallothioneins. 6 1-5.Example of lead thiolate complexes. 8 1-6. The motivation of this work. 11 Chapter 2. Results and Discussion 12 Synthesis and characterization of H2[P2S2’] ligand 12 Syntheses. 12 X-ray structure of H2[P2S2’] 13 Electrospray Ionization Mass Analysis of H2[P2S2’] 15 Nuclear Magnetic Resonance Spectrum of H2[P2S2’]. 16 IR spectrum 18 Synthesis and characterization of H2[P2S2”] ligand 19 Syntheses. 19 Electrospray Ionization Mass Analysis of H2[P2S2”] 19 Nuclear Magnetic Resonance Spectrum of H2[P2S2”]. 21 IR spectrum 22 Synthesis and characterization of Pb(P2S2”) (1) 23 Syntheses. 23 X-ray structural determination of Pb(P2S2”) (1) 23 Electrospray Ionization Mass analysis of Pb(P2S2”) (1). 29 UV-Vis spectrum of Pb(P2S2”) (1). 30 Nuclear Magnetic Resonance Spectrum of Pb(P2S2”) (1) 31 Synthesis and characterization of [Pb(P2S2”)]2[Pb2(P2S2”)2] (2) 33 Syntheses. 33 X-ray structural determination of [Pb(P2S2”)]2[Pb2(P2S2”)2] (2) 33 Electrospray Ionization Mass analysis of [Pb(P2S2”)]2[Pb2(P2S2”)2]. 38 UV-Vis spectrum of [Pb(P2S2”)]2[Pb2(P2S2”)2] (2). 40 Nuclear Magnetic Resonance Spectrum of [Pb(P2S2”)]2[Pb2(P2S2”)2] (2). 41 Studies of exchange between monomeric Pb(II) species and dimeric Pb(II) species. 43 Synthesis and characterization of [Cd(P2S2”)]2 (3) 46 Syntheses. 46 X-ray structural determination of [Cd(P2S2”)]2 (3) 46 Electrospray Ionization Mass analysis of [Cd(P2S2”)]2 (3). 50 Nuclear Magnetic Resonance Spectrum of [Cd(P2S2”)]2 (3). 51 UV-Vis spectrum of [Cd(P2S2”)]2 (3). 55 Chapter 3. Conclusions 56 Chapter 4. Experimental and Instruments 57 4-1 General procedures 57 Infrared Spectroscopy 57 Electrospray Ionization Mass Analysis 57 Nucleic Magnetic Resonance Spectroscopy 57 X-ray Crystallographic Data Collection and Refinement of the structures 58 Elemental Analysis 58 Uv-Vis Spectroscopy 58 4-2 Synthesis 58 Synthesis of Li2[PhPCH2CH2PPh]•(THF)4 58 Synthesis of ClPhPCH2CH2PPhCl 58 Synthesis of 2-trimethylsilyl-thiolphenol. 59 Synthesis of H2[P2S2’] ligand. 59 Synthesis of H2[P2S2”] ligand. 60 Synthesis of [Pb(P2S2”)]•CH2Cl2•0.5MeOH (1) 60 Synthesis of [Pb(P2S2”)]2[Pb2(P2S2”)2]•4CH2Cl2 (2) 60 Synthesis of [Cd(P2S2”)]2 (3) 61 Appendix A 62 Appendix B 66 Reference 78   List of Figures Figure 1-1. The active site of Mo-nitrogenase. 1 Figure 1-2.Structure of Cd-MT. 2 Figure 1-3.The active site of Cd-MT cluster. 2 Figure 1-4. The structure of tetradentate and pentadentate N/S ligands. 3 Figure 1-5. The structure of N(CH2CH2SH)3, H3[NS3] ligand and metal complexes. 3 Figure 1-6. The structure of [SiPiPr2SAd]H and [SiPiPrSAd2]H ligand and metal complex. 4 Figure 1-7. The structure of dithiolate-diposphine ligands and metal complexes. 4 Figure 1-8. The structure of dithiolate-diposphine ligands and metal complexes. 5 Figure 1-9. The structure of P2S2 thioether ligands and Ni complexes. 5 Figure 1-10. The structure of PS3 ligand and metal complexes. 6 Figure 1-11.The structure of cadmium dithiolate complex. 6 Figure 1-12. Structure of N-donor ligands. 7 Figure 1-13. Reaction of Cd(NO3) with TabHPF6 and N-donor ligands. 7 Figure 1-14.Structure of [ClCd8{SCH(CH2CH2)2N(H)Me}16]15+ core 8 Figure 1-15.Structure of [Cd2{Ph2PC6H4S-2}3{Ph2-P(O)C6H4S-2}]. 8 Figure 1-16. Reaction of [TmPh]Zn(NCMe) with Pb(ClO4)2 9 Figure 1-17. The structure of [PATH-Pb]+. 9 Figure 1-18. Lead-thiolate complex of 4-Me3NC6H4SH with different Lewis base. 10 Figure 1-19. lead-thiolate complex of [(C6H5S)4Pb2(py)]n. ..10 Figure 2-1. ORTEP diagram of ligand H2[P2S2’] with 35% probability thermal ellipsoids…………………………………………………...................13 Figure 2-2. Fischer Projection of H2[P2S2’]. 15 Figure 2-3. The ESI-MS analysis of H2[P2S2’] 16 Figure 2-4.The isotope patterns of H2[P2S2’]. (a) The experimental one. (b) The theoretical one. 16 Figure 2-5. 1H NMR of H2[P2S2’] in CD2Cl2 17 Figure 2-6. 31P NMR of H2[P2S2’] in CD2Cl2 17 Figure 2-7.The IR spectrum of H2[P2S2’] in KBr 18 Figure 2-8. The ESI-MS analysis of H2[P2S2”] 20 Figure 2-9.The isotope patterns of H2[P2S2”]. (a) The theoretical one. (b) The experimental one. 20 Figure 2-10. 1H NMR of H2[P2S2”] in CD2Cl2 21 Figure 2-11. 31P NMR of H2[P2S2”] in CD2Cl2 22 Figure 2-12.The IR spectrum of H2[P2S2”] in KBr 22 Figure 2-13. ORTEP diagram of Pb(P2S2”) (1) with 35% probability thermal ellipsoids. H atoms and solvated CH2Cl2 are omitted for clarit..……..24 Figure 2-14. ORTEP diagram of metal center of 1...................................................24 Figure 2-15. The structure of lead-thiolate complexes reported in literatures.. 26 Figure 2-16. Packing diagram in unitcell of 1, view along the a axis. H atoms and solvated CH2Cl2 are omitted for clarity 27 Figure 2-17. Intermolecular interaction of 1. 28 Figure 2-18. The structure of dimer-like 1 (left) and the geometry of the Pb(II) center (right). 28 Figure 2-19. The positive-mode ESI-MS analysis of 1 29 Figure 2-20.The isotope patterns of 1. (a) The experimental one. (b)The theoretical one. 29 Figure 2-21. UV-Vis spectrum of 1. 30 Figure 2-22. 1H NMR of complex 1 in CD2Cl2. 31 Figure 2-23. 31P NMR of complex 1 in CD2Cl2 32 Figure 2-24. 207Pb NMR of complex 1 in CD2Cl2 .32 Figure 2-25. Packing diagram in unit cell of 2, view along the a axis. H atoms and solvated CH2Cl2 are omitted for clarity. ..34 Figure 2-26. ORTEP diagram of dilead unit in complex 2 with 35% probability thermal Ellipsoids. H atoms and solvated CH2Cl2 are omitted for clarity………………………………………………………………………36 Figure 2-27. ORTEP diagram of metal center of dilead unit in complex 2. 36 Figure 2-28. ORTEP diagram of monolead unit in complex 2 with 35% probability thermal ellipsoids. H atoms and solvated CH2Cl2 are omitted for clarity.………………………………………………………………....37 Figure 2-29. ORTEP diagram of metal center of monolead unit in complex 2. 38 Figure 2-30. The positive-mode ESI-MS analysis of 2. 39 Figure 2-31.The isotope pattern of dilead unit. (a) The experimental one. (b) The theoretical one. 39 Figure 2-32. The isotope pattern of monolead unit. (a) The experimental one. (b)The theoretical one. 40 Figure 2-33. UV-Vis spectrum of 2 40 Figure 2-34. 1H NMR of complex 2 in CDCl3. 41 Figure 2-35. 1H NMR spectra of complex 1 and 2. 42 Figure 2-36. 31P NMR of complex 2 in CDCl3 43 Figure 2-37. 31P NMR spectra of complex 1 and 2. 43 Figure 2-38. 31P NMR spectrum of complex 1 in different solvent. 44 Figure 2-39. Variable temperature UV-Vis spectrum of complex 1. 45 Figure 2-40. Variable temperature UV-Vis spectrum of complex 2. 45 Figure 2-41. ORTEP diagram of [Cd(P2S2”)]2 (3) with 35% probability thermal ellipsoids. H atoms are omitted for clarity……………………………47 Figure 2-42. ORTEP diagram of metal center of [Cd(P2S2”)]2 (3) 47 Figure 2-43. The structures of cadmium-thiolate complexes reported in literatures.. 49 Figure 2-44. The ESI-MS analysis of 3. 50 Figure 2-45. The isotope pattern of 3. (a) The experimental pattern. (b) The theoretical pattern. 51 Figure 2-46. 31P NMR of complex 3 in CD2Cl2 52 Figure 2-47. 1H NMR of complex 3 in CD2Cl2 53 Figure 2-48. 113Cd NMR of complex 3 in CD2Cl2. 53 Figure 2-49. The structure of cadmium complexes. 54 Figure 2-50. UV-Vis spectrum of 3………………………………………………...55   List of Tables Table 2-1. Crystallographic data of H2[P2S2’] ligand 14 Table 2-2. Select bond distances(Å) and angles(deg) of H2[P2S2’] 15 Table 2-3. Select bond distances(Å) and angles(deg) of 1 24 Table 2-4. Crystallographic data of complex 1 25 Table 2-5. The Pb-S bond distance of lead-thiolate complexes 26 Table 2-6. Intermolecular interaction distance of 1 27 Table 2-7. Crystallographic data of complex 2 35 Table 2-8. Select bond distances (Å) and angles (deg) of dilead unit in complex 2 37 Table 2-9. Select bond distances (Å) and angles (deg) of complex 1 and monolead unit of complex 2 38 Table 2-10. Crystallographic data of complex 3 48 Table 2-11. Select bond distances (Å) and angles (deg) of 3 49 Table 2-12. The Cd-S bond distance of cadmium-thiolate complexes 50 Table 2-13. 113Cd chemical shift of cadmium complexes. 54

    1 Solomon, E. I., Gorelsky, S. I. & Dey, A. Metal-thiolate bonds in bioinorganic chemistry. Journal of computational chemistry 27, 1415-1428, (2006).
    2 Krebs, B. & Henkel, G. Transition-Metal Thiolates: From Molecular Fragments of Sulfidic Solids to Models for Active Centers in Biomolecules. Angewandte Chemie International Edition in English 30, 769-788, (1991).
    3 Hinnemann, B. & Nørskov, J. K. Modeling a Central Ligand in the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society 125, 1466-1467, (2003).
    4 Henkel, G. & Krebs, B. Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features--structural aspects and biological implications. Chemical reviews 104, 801-824, (2004).
    5 Namdarghanbari, M., Wobig, W., Krezoski, S., Tabatabai, N. M. & Petering, D. H. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 16, 1087-1101, (2011).
    6 Vasak, M. & Meloni, G. Chemistry and biology of mammalian metallothioneins. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 16, 1067-1078, (2011).
    7 Tokar, E. J., Diwan, B. A. & Waalkes, M. P. Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice. Toxicology 276, 5-10, (2010).
    8 Abu-Dari, K., Hahn, F. E. & Raymond, K. N. Lead sequestering agents. 1. Synthesis, physical properties, and structures of lead thiohydroxamato complexes. Journal of the American Chemical Society 112, 1519-1524, (1990).
    9 Bressler, J., Kim, K.-a., Chakraborti, T. & Goldstein, G. Molecular Mechanisms of Lead Neurotoxicity. Neurochem Res 24, 595-600, (1999).
    10 Sellmann, D., Utz, J. & Heinemann, F. W. Transition-Metal Complexes with Sulfur Ligands. 132.1Electron-Rich Fe and Ru Complexes with [MN2S3] Cores Containing the New Pentadentate Ligand ‘N2H2S3‘2-(= 2,2‘-Bis(2-mercaptophenylamino)diethyl Sulfide2−). Inorganic chemistry 38, 459-466, (1999).
    11 Sellmann, D., Soglowek, W., Knoch, F., Ritter, G. & Dengler, J. Transition-metal complexes with sulfur ligands. 88. Dependence of spin state, structure, and reactivity of [FeII(L) ('NH)S4')] complexes on the coligand L (L = CO, N2H2, N2H4, NH3, pyridine, NHCH3NH2, CH3OH, THF, P(OCH3)3, P(OPh)3): model complexes for iron nitrogenases ('NHS4'2-dianion of 2,2'-bis[(2-mercaptophenyl)thio]diethylamine). Inorganic chemistry 31, 3711-3717, (1992).
    12 D. Sellmann, J. Utz & Heinemann, F. W. Electron-Rich Fe and Ru Complexes with the New Trisamine Dithiolate Ligand N3H3S2-H2 [2,2-Bis(2-mercaptophenylamino)diethylamine]. Eur. J. Inorg. Chem., 341-348, (1999).
    13 Davies, S. C. et al. Vanadium complexes of the N(CH2CH2S)33-ligand with co-ligands relevant to nitrogen fixation processes. Chem. Commun., 1261-1262, (1997).
    14 Davies, S. C., Durrant, M. C., Hughes, D. L., Richards, R. L. & Sanders, J. R. Iron, cobalt and vanadium complexes of the N(CH2CH2S)33- ligand with chloride, azide, cyanide and carbonyl co-ligands. J. Chem. Soc., Dalton Trans., 4694-4701, (2000).
    15 S. C. Davies, D.L. Hughes, Richards, R. L. & Sanders, J. R. Iron complexes of the N(CH2CH2S)33- ligand; a paramagnetic, trigonal-bipyramidal Fe(II) CO complex as a chelate ligand. Chem. Commun., 2699-2700 (1998).
    16 Takaoka, A., Mankad, N. P. & Peters, J. C. Dinitrogen complexes of sulfur-ligated iron. J Am Chem Soc., 133, 8440-8443, (2011).
    17 Issleib, K. & Gans, W. Cobalt- sowie Rhodiumkpmplexe primarer Mercaptoalkyl-phosphine und Bemerkungen zur Komplexbildung quadridentater P,P,S,S-liganden. Z. Anorg. Allg. Chem 491, 163-174, (1982).
    18 Schmelzer, R. & Schwarzenbach, D. Meso and Racemic diastereoisomers of 1,3-bis(2-mercaptoethyl-phenyl-phosphino)-propane nickel (II). Cryst. Struct. Commun. 10, 1317-1321 (1981).
    19 Kitagawa, T., Kita, M., Kashiwabara, K. & Fujita, J. Preparation and Characterization of Cobalt(III), Nickel(II), And Copper(I) Complexes Containing 5,8-Diphenyl-5,8-diphospha-2,11-dithiadodecane (L), CH3SCH2CH2P(C6H5)CH2CH2P(C6H5)CH2CH2SCH3, and Molecular-Structure of Ni(rac(P)-L)2(BF4)2. Bull. Chem. Soc. Jpn. 64, 2942-2947, (1991).
    20 Wei-Cheng, C., Chi-Chin, W. & Hua-Fen, H. Catalytic Reduction of Hydrazine to Ammonia by a Vanadium Thiolate Complex. Inorg.Chem. 45, 3164-3166 (2006).
    21 Baba, K., Okamura, T. A., Yamamoto, H., Yamamoto, T. & Ueyama, N. Zinc, cadmium, and mercury 1,2-benzenedithiolates with intramolecular NH...S hydrogen bonds. Inorganic chemistry 47, 2837-2848, (2008).
    22 Zheng, A. X. et al. Reactions of cadmium(II) nitrate with 4-(trimethylammonio)benzenethiolate in the presence of N-donor ligands. Dalton transactions 41, 558-566, (2012).
    23 Gonzàlez-Duarte, P., Clegg, W., Casals, I., Sola, J. & Rius, J. Unprecedented Polycrystal Structure of a New Cadmium Thiolate Containing an Unusually Highly Charged [ClCd8{SCH(CH2CH2)2N(H)Me}16]15+Core. Journal of the American Chemical Society 120, 1260-1266, (1998).
    24 Fernández, P. et al. Zinc(II), Cadmium(II), Mercury(II), and Ethylmercury(II) Complexes of Phosphinothiol Ligands. Inorganic chemistry 47, 2121-2132, (2008).
    25 Bridgewater, B. M. & Parkin, G. Lead Poisoning and the Inactivation of 5-Aminolevulinate Dehydratase as Modeled by the Tris(2-mercapto-1-phenylimidazolyl)hydroborato Lead Complex, {[TmPh]Pb}[ClO4]. Journal of the American Chemical Society 122, 7140-7141, (2000).
    26 Andersen, R. J. et al. Characterization of the First N2S(alkylthiolate)lead Compound:  A Model for Three-Coordinate Lead in Biological Systems†. Inorganic chemistry 45, 6574-6576, (2006).
    27 Briand, G. G. et al. Structure and reactivity of the cationic lead(II) thiolate [(4-Me3NC6H4S)6Pb3][PF6]6. Polyhedron 33, 171-178, (2012).
    28 Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. Monomeric, one- and two-dimensional networks incorporating (2,6-Me2C6H3S)2Pb building blocks. Dalton transactions, 3515-3520, (2004).
    29 Long, R. J., Jones, D. J., Gibson, V. C. & White, A. J. P. Zirconium Complexes Containing Tetradentate O,P,P,O Ligands: Ethylene and Propylene Polymerization Studies. Organometallics 27, 5960-5967, (2008).
    30 Caruso, F., Chan, M.-L. & Rossi, M. A Short Pb•••Pb Separation in the Polymeric Compound Bis(pyrrolidinecarbodithioato)lead(II) and a Conformational Pathway Interconversion for the “PbIIS4” Framework. Inorganic chemistry 36, 3609-3615, (1997).
    31 Mah, V. & Jalilehvand, F. Lead(II) complex formation with glutathione. Inorganic chemistry 51, 6285-6298, (2012).
    32 Hummel, H.-U. & Meske, H. Chemistry of subvalent main group metals with dithiolates. Part 2. X-Ray structural, thermal, and theoretical investigations on the novel one-dimensional stacking structure K2[Pb{S2C=C(CN)2}2]•2H2O. Journal of the Chemical Society, Dalton Transactions, 627, (1989).
    33 Sun, W.-Y., Zhang, L. & Yu, K.-B. Structure and characterization of novel zinc(II) and cadmium(II) complexes with 2-(benzoylamino)benzenethiolate and 1-methylimidazole. NH•••S Hydrogen bonding in metal complexes with a S2N2 binding site. Journal of the Chemical Society, Dalton Transactions, 795-798, (1999).
    34 Allred, R. A., Huefner, S. A., Rudzka, K., Arif, A. M. & Berreau, L. M. A cadmium hydroxide complex of a N3S-donor ligand containing two hydrogen bond donors: synthesis, characterization, and CO2 reactivity. Dalton transactions, 351-357, (2007).
    35 Sun, W.-Y., Shi, X.-F., Zhang, L., Hu, J. & Wei, J.-H. Aromatic C–H---S interaction in the arenethiolate complexes of cadmium(II) with S2N2 donor set evidenced from 113Cd NMR spectroscopy. Journal of Inorganic Biochemistry 76, 259-264, (1999).
    36 Bonasia, P. J. & Arnold, J. Zinc, cadmium, and mercury tellurolates:hydrocarbon solubility and low coordination numbers enforced by sterically encumbered silyltellurolate ligands. Inorganic chemistry 31, 2508-2514, (1992).

    下載圖示 校內:2015-07-19公開
    校外:2018-07-19公開
    QR CODE