| 研究生: |
呂政學 Lu, Cheng-Hsueh |
|---|---|
| 論文名稱: |
氧化鉿及氮氧化鉿薄膜作為閘極介電層之製備與特性研究 Fabrication and Characterization of HfOx and HfOxNy Thin Films for Gate Dielectric Applications |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 高介電常數 、閘極介電層 、氧化鉿 、氮氧化鉿 |
| 外文關鍵詞: | Hafnium oxynitride, gate dielectric, high-k, Hafnium oxide |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用金屬鉿(Hf)靶材,利用反應性磁控濺鍍法在Ar + O2及Ar + N2的氣氛環境下,分別濺鍍HfOx及HfOxNy薄膜,並在氮氣氛700 ℃下退火15分鐘,以作為閘極介電層。實驗中將分析兩種介電薄膜(HfOx、HfOxNy)之材料性質,以及其作為金屬/氧化物/半導體電容結構中之介電層時的電性質,並探討材料性質與電性表現之間的關係,藉以評估其作為積體電路閘極介電層之可行性。此外,本研究中也使用N2O及NH3兩種氣氛,在薄膜沈積前對矽基材施以低溫(450 ℃)電漿氮化處理,並探討此基材氮化前處理步驟對MOS電容器電性表現造成的影響。
本實驗利用拉塞福背向散射分析儀對薄膜進行組成成份及密度鑑定;使用低掠角X光繞射儀針對薄膜結構及結晶性進行分析;使用高解析穿透式電子顯微鏡觀察薄膜截面影像,以判斷薄膜及中介層厚度與其微結構;X光光電子能量分析儀則被用來對電漿處理矽基材表面,及介電薄膜進行表面化學鍵結態分析;MOS結構電容器的I-V曲線乃使用直流電壓源/微安培計量儀(HP4140B)量得,C-V曲線則以電感電容電阻計量儀(HP4284)進行量測;此外,也藉由橢圓偏光儀的光學量測,來得到有關薄膜折射率及孔隙率的資訊。
實驗結果顯示,在Ar + O2環境下所濺鍍厚度約90 nm的HfOx薄膜,初鍍時將含有過量氧(x > 2);而初鍍HfN薄膜,即使其乃採用Ar + N2氣氛濺鍍而不通入O2,亦將含有氧,故稱之為HfOxNy;兩薄膜經退火後皆趨近Hf:O = 1:2之計量比。就閘極介電層應用所需的極薄厚度(< 10 nm)而言,兩種介電薄膜即使經過700 ℃退火後,皆仍呈現非晶態,將可避免漏電流經由晶界傳導。此外,無論基材有無經過電漿氮化處理,兩薄膜系統皆存在結構類似SiO2的中介層,但HfOxNy薄膜因濺鍍時不通入氧氣氛,明顯較能抑制中介層的成長;同時HfOxNy也因摻入氮原子而擁有較緻密的薄膜結構。
除了電漿氮化的步驟能夠在中介層中引入氮原子,在HfOxNy系統中,氮原子亦能在濺鍍製程中被引入於中介層內,且此效應較N2O或NH3電漿處理造成中介層的含氮量更為明顯。薄膜沈積前的基材氮化,雖然對於抑制中介層於退火時繼續成長的效果並不明顯,但卻能使MOS電容器的平帶電壓偏移量(ΔVFB)減少,且以N2O電漿處理之效果較佳。若就介電層材料來說,經700 ℃退火後的HfOxNy薄膜較退火後的HfOx薄膜更為緻密,且擁有較高的光學折射率,因而呈現極小的遲滯C-V曲線寬度(ΔVh),顯示氧化層捕獲電荷(Qot)數量明顯地因氮原子存在,使結構更為緻密而被減少;同時,HfOxNy薄膜對漏電流的阻障能力也較HfOx更佳。
Hafnium oxide (HfOx) and hafnium oxynitride (HfOxNy) gate dielectrics were prepared by reactive magnetron sputtering from Hf target, following by postdeposition annealing at 700 ℃ in N2 ambient. We investigated the material and electrical characteristics to establish the feasibility of applying sputtered HfOx and HfOxNy as the gate oxide. In addition, low-temperature (450 ℃) N2O or NH3 plasma nitridation on Si surface was also carried out. The influence of surface nitridation on the interface quality and electrical properties is also discussed.
Rutherford backscattering spectrometry (RBS) was utilized to examine the composition and density of the thin films. The crystal structure of the thin films was identified by glacing incident angle x-ray diffraction (GIAXRD). X-ray photoelectron spectroscopy (XPS) was applied for surface chemical bonding analysis of nitrided Si and the dielectric films. The thicknesses of films were determined by high-resolution transmission electron microscopy (HRTEM), and the microstructure was also characterized. For electrical properties, picoampere meter/DC voltage source (HP4140B) was used to measure the I-V curves, and the C-V curves were obtained by LCR meter (HP4284). For optical properties, ellipsometry was used not only to estimate the refractive index of the thin films, but also to simulate the percentage of void in the films.
Based on RBS analysis, as-deposited HfOx film possesses excess oxygen atoms, and both HfOx and HfOxNy films transform to HfO2 after annealing at 700 ℃. According to the results of GIAXRD and HRTEM, ultra-thin HfOx and HfOxNy films are amorphous even after annealing at 700 ℃ in N2 ambient for 15 minutes. From HRTEM images and XP spectra, there exist apparent interfacial layers with the structure close to SiO2 at the HfOx/Si and HfOxNy/Si interfaces. However, HfOxNy shows a thinner interlayer during deposition because of the nearly oxygen-free ambient. Besides, HfOxNy film also presents a denser structure than the HfOx film does.
Nitrogen atoms are introduced into the interfacial layers by plsma nitridation on Si before dielectrics deposition. For HfOxNy dielectrics system, the nitrogen-doped process in interfacial layers also occurs during sputtering, and the effects are more significant than surface nitridation treatment. For both HfOx and HfOxNy dielectrics systems, interfacial layers will still further grow during post-annealing process even if Si substrates have been passivated through surface nitridation. Nevertheless, ΔVFB is reduced by plasma nitridation, indicating that the number of fixed oxide charges are effectly decreased, especially via N2O plasma.
In comparison to HfOx, MOS stacks with HfOxNy dielectics present smaller hysteresis loops, higher refractive index, and less percentage of voids, which expresses that the number of oxide trapped charges are evidently decreased due to nitrogen incorporation in the dielectrics. Furthermore, HfOxNy dielectrics also show higher ability to suppress leakage current than HfOx.
[1] R.M.C. de Almeida and I.J.R. Baumvol, Reaction-diffusion in high-κ dielectrics on Si, Surf. Sci. Rep. 49, 1 (2003)
[2] H. Xiao,半導體製程技術導論, 2nd ed. (學銘圖書有限公司, 台北, 2002)
[3] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, High ε gate dielectrics Gd2O3 and Y2O3 for silicon, Appl. Phys. Lett. 77, 130 (2000)
[4] G. D. Wilk, R. M. Wallace and J. M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001)
[5] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts and A. M. Sergent, Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation, Science 283, 1897 (1999)
[6] K. J. Hubbard and D. G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996)
[7] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics, Appl. Phys. Lett. 81, 2053 (2002)
[8] M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, Interdiffusion studies for HfSixOy and ZrSixOy on Si, J. Appl. Phys. 92, 3540 (2002)
[9] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981)
[10] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous and A. R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-State Circuits 9, 256 (1974)
[11] The International Technology Roadmap for Semiconductor: 2003 Ed. (2004_update)
[12] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides, Nature 399, 758 (1999)
[13] G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant, M. Green et al., Low leakage, ultra-thin gate oxides for extremely high performance sub-100 nm nMOSFETs, Tech. Dig. Int. Electron Devices Meet. 7-10 Dec, 930 (1997)
[14] G. Timp, K. K. Bourdelle, J. E. Bower, F. H. Baumann, T. Boone, R. Cirelli, K. Evans-Lutterodt, J. Garno, A. Ghetti, H. Gossmann et al., Progress toward 10 nm CMOS devices, Tech. Dig. Int. Electron Devices Meet. 6-9 Dec, 615 (1998)
[15] J. D. Plummer and P. B. Griffin, Material and process limits in silicon VLSI technology, Proc. IEEE 89, 240 (2001)
[16] Y. Taur, The incredible shrinking transistor, IEEE Spectrum 7, 25 (1999)
[17] C. P. Liu, Y. Ma, H. Luftman and S. J. Hillenius, Preventing boron peretration through 25-Å gate oxides with nitrogen implant in the Si substrates, IEEE Electron Dev. Lett. 18, 212 (1997)
[18] A. Martin, P. Osullivan and A. Mathewson, Dielectric reliability measurement methods: A review, Microelectron. Reliab. 38, 37 (1998)
[19] Y. C. Yeo, T. J. King and Chenming Hu, MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations, Trans. Electron Devices 50, 1027 (2003)
[20] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New Jerse, 1982)
[21] J. Robertson, Electronic structure amd band offsets of high-dielectri - constant gate oxides, MRS Bulletin Mar, 217 (2002)
[22] P. W. Peacock and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides, J. Appl. Phys. 92, 4712 (2002)
[23] J. Robertson and C. W. Chen, Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite, Appl. Phys. Lett. 74, 1168 (1999)
[24] D. G. Schlom and J. H. Haeni, A thermodynamic approach to selecting alternative gate dielectrics, MRS Bulletin Mar, 198 (2002)
[25] C. A. Billman, P. H. Tan, K. J. Hubbard, and D. G. Kanan, Alternate gate oxides for silicon MOSFETs using high k dielectrics, Mater. Res. Soc. Symp. Proc. 567, 409 (1999)
[26] K. J. Hubbard and D. G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996)
[27] A. Kumar, D. Rajdev, and D. L. Douglass, Effect of oxide defect structure on the electrical properties of ZrO2, J. Am. Chem. Soc. 55, 439 (1972)
[28] M. R. Visokay, J. J. Chambers, A. L. Rotondaro, A. Shanware and L. Colombo, Application of HfSiON as a gate dielectric material, Appl. Phys. Lett. 80, 3183 (2002)
[29] G. D. Wilk, R. M. Wallace and J. M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics, J. Appl. Phys. 87, 484 (2000)
[30] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, MOS characteristics of ultrathin CVD HfAlO gate dielectrics,IEEE Electron Device Lett. 24, 556 (2003)
[31] R. B. van Dover, Amorphous lanthanide-doped TiOx dielectric films, Appl. Phys. Lett. 74, 3041 (1999)
[32] K. Kukli, M. Ritala and M. Leskelä, Properties of (Nb1-xTax)2O5 solid solutions and (Nb1-xTax)2O5-ZrO2 nanolaminates grown by atomic layer epitaxy, Nanostructured Materials, 8, 785 (1997)
[33] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw and C. D. Overgaard, Field effect transistors with SrTiO3 gate dielectric on Si, Appl. Phys. Lett. 76, 1324 (2000)
[34] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, High-resolution depth profiling in ultrathin Al2O3 films on Si, Appl. Phys. Lett. 76, 176 (2000)
[35] M. Copel, M. A. Gribelyuk and E. P. Gusev, Structure and stability of ultrathin zirconium oxide layers on Si (001), Appl. Phys. Lett. 76, 436 (2000)
[36] H. Kim, P. C. Mclntyre and K. C. Saraswat, Effect of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition, Appl. Phys. Lett. 82, 106 (2003)
[37] S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng and W. K. Choi, Crystalline zirconia oxide on silicon as alternative gate dielectrics, Appl. Phys. Lett. 78, 1604 (2001)
[38] S. Guha, et al, Compatibility challenges for high-k materials integration into CMOS technology, MRS Bulletin Mar., 226 (2002)
[39] David. Lammers, EE TIMES, Apr. 8, 2003, Available: URL: http://www.eetimes.com/story/OEG20030408s0047
[40] T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, Binary Alloy Phase Diagrams, (American Society for metals, Ohio, 1987)
[41] J. Aarik, A. Aidla, H. Mändar, T. Uustare, K. Kukli and M. Schuisky, Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures, Appl. Surf. Sci. 173, 15 (2001)
[42] I. Barin, Thermochemical datas of pure substances, 3rded. (VCH, New York, 1995)
[43] S. P. Murarka and C. C. Chang, Thermal oxidation of hafnium silicide films on silicon, Appl. Phys. Lett. 37, 639 (1980)
[44] A. N. Saxena, K. L. Mittal, Optical and dielectric constant of hafnium and its anodic oxide films, J. Appl. Phys. 46, 2788 (1975)
[45] M. Balog, M. Schieber, S. Patai, and M. Michman, Thin films of metal oxides on silicon by chemical vapor depositoin with organometallic compounds, J. Cryst. Growth 17, 298 (1972)
[46] M. Balog, M. Schieber, M. Michman, and S. Patai, Chemical vapor deposition and characterization of HfO films from organo-hafnium compounds, Thin Solid Films 41, 247 (1977)
[47] M. Balog, M. Schieber, M. Michman, and S. Patai, J. Elec. Chem. Soc. 126, 1203 (1979)
[48] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application, Tech. Dig. Int. Electron Devices Meet., 133 (1999)
[49] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. J. Qi, C. Kang and J. C. Lee, Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8 Å-12 Å), Tech. Dig. Int. Electron Devices Meet., 39 (2000)
[50] L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Lett. 21, 181 (2000)
[51] Y.-S. Lin, R. Puthenkovilakam and J. P. Chang, Dielectric propertiy and thermal stability of HfO2 on Silicon, Appl. Phys. Lett. 81, 2041 (2002)
[52] B. Y. Tsui and H. W. Chang, Formation of interfacial layer during reactive sputtering of hafnium oxide, J. Appl. Phys. 93, 10119 (2003)
[53] M. Oshima, S. Toyoda, T. Okumura et al., Chemistry and band offsets of HfO2 thin films for gate insulators, Appl. Phys. Lett. 83, 2172 (2003)
[54] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee and J. G. Ekerdt, Electrical and spectroscopic comparision of HfO2/Si interfaces on nitrided and un-nitrided Si(100), J. Appl. Phys. 91, 4353 (2002)
[55] S. Ramanathan, P. C. Mclntyre, S. Guha and E. Gusev, Charge trapping studies on ultrathin ZrO2 and HfO2 high-k dielectrics grown by room temperature ultraviolet ozone oxidation, Appl. Phys. Lett. 84, 389 (2004)
[56] S. W. Nam, J. H. Yoo, S. Nam, H. J. Choi, Dongwon Lee, D. H. Ko, J. H. Moon, J. H. Ku, S. Choi, Influence of annealing condition on the properties of sputtered hafnium oxide, J. Non-cryst. Solids. 303, 139 (2002)
[57] V. Mikhelashvili, R. Brener, O. Kreinin, B. Meyler, J. Shneider, and G. Eisenstein, characteristics of metal-insulator-semiconductor capacitors based on high-k HfAlO dielectric films obtained by low-temperature electron-beam gun evaporation, Appl. Phys. Lett. 85, 5950 (2004)
[58] M. Lee, Z.-H. Lu, W.-T. Ng, D. Landheer, X. Wu and S. Moisa, Interfacial growth in HfOxNy gate dielectrics deposition using [(C2H5)2N]4Hf with O2 and NO, Appl. Phys. Lett. 83, 2638 (2003)
[59] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa and D. L. Kwong, Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode, Int. Electron Devices Meet., 857 (2002)
[60] M. A. Quevedo-Lopez, M. El-Bouanani, M. J. Kim, B. E. Gnade, R. M. Wallace, M. R. Visokay, A. LiFatou, J. J. Chambers and L. Colombo, Effect of N incorporation on boron penetration from p+ polycrystalline-Si through HfSixOy films, Appl. Phys. Lett. 82, 4669 (2003)
[61] X. Wang, J. Liu, G. Zhu, N. Yamada and D. L. Kwong, A simple approach to fabrication of high-quality HfSiON gate dielectrics with improved nMOSFET performances, IEEE Trans. Electron Devices. 51, 1798 (2004)
[62] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, S. Krishnan and J. C. Lee, Structural and electrical properties of HfO2 with top nitrogen incorporated layer, IEEE Electron Device Lett. 23, 249 (2002)
[63] C. S. Kang, H. J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J. H. Han and J. C. Lee, Bonding state and electrical properties of ultrathin HfOxNy gate dielectrics, Appl. Phys. Lett. 81, 2593 (2002)
[64] B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Dev. ED-27, 606 (1980)
[65] D. K. Schroder, Semiconductor material and device characterization 2nd ed., (Wiley, New York 1998)
[66] B. E. Deal, M. Sklar, A. S. Grove and E. H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon, J. Electrochem. Soc. 114, 266 (1967)
[67] G. Greeuw, J. F. Verwey, The mobility of Na+, Li+ and K+ ions in thermal grown SiO2 films, J. Appl. Phys. 56, 2218 (1984)
[68] Y. Shacham-Diamond, A. Dedhia, D. Hoffstetter and W. G. Oldham, Copper transport in thermally SiO2, J. Electrochem. Soc. 140, 2427 (1993)
[69] L. M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes, Solid-State Electron. 5, 285 (1962)
[70] D. M. Brown and P. V. Gray, Si-SiO2 fast interface state measurements, J. Electrochem. Soc. 115, 760 (1968)
[71] C. N. Berglund, IEEE Trans. Electron Dev. ED-13, 701 (1966)
[72] E. H. Nicollian and A. Goetzberger, The Si-SiO2 interface---Electrical properties as determined by the metal-insulator-silicon conductance technique, Bell Syst. Tech. J. 46, 1055-1133 (1967)
[73] J. S. Burgler and P. G. A. Jespers, Charge pumping in MOS devices, IEEE Trans. Electron Dev. ED-16, 297 (1969)
[74] P. A. Muls, G. J. Declerck and R. J. van Overstraeten, Characterization of the MOSFET operating in weak inversion, Adv. In Electron. and Electron Phys. 47, 197-266 (1078)
[75] D. A. Neamen, Semiconductor Physics & Device: basic principles, 2rd ed. (Irwin, Homewood, 1997)
[76] M. Kuhn and D. J. Silversmith, Ionic contamination and transport of mobile ions in MOS structures, J. Electrochem. Soc. 118, 966 (1971)
[77] T. M. Buck, F. G. Allen, J. V. Dalton and J. D. Struthers, Studies of sodium in SiO2 films by neutron activation and radiotracer techniques, J. Electrochem. Soc. 114, 862 (1967)
[78] E. Yon, W. H. Ko and A. B. Kuper, Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis, IEEE Trans. Electron Dev. ED-13, 276 (1966)
[79] B. Yurash and B. E. Deal, A method for determining sodium content of semiconductor processing materials, J. Electrochem. Soc. 115, 1191 (1968)
[80] W. K. Chu, J. W. Mayer and M. A. Nicolet, Backscattering Spectrometry, (Academic, New York, 1978)
[81] R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis, (P T R Prentice-Hall, New Jersey, 1993)
[82] D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester, 1990)
[83] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, (Plenum, New York, 1996)
[84] J. C. Jans, R. W. J. Hollering and M. Erman, in Analysis of microelectronic materials and devices, M. Grasserbauer and H. W. Werner, Editor, (John Wiley & Sons, NY, 1996), pp.681-732
[85] See, M-44 spectroscopic ellipsometey Online Help, from J. A. Woollam Corporation
[86] S. Venkataraj, O. Kappertz, H. Weis, R. Srese, R. Jayavel and M. Wuttig, Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering, J. Appl. Phys. 92, 3599 (2002)
[87] K. Koski, J. Holsa and P. Juliet, Properties of zirconium oxide thin films deposited by pulse reactive magnetron sputtering, Surf. Coat. Technol. 120-121, 303 (1999)
[88] J. Emsley, The elements, (Clarndon, Oxford, 1989)
[89] R. Lide, CRC Handbook of chemistry and physics, 85th ed. (CRC, Boca Raton, Fl, 2004)
[90] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, edited by J. Chastain and R. C. King, (Inc., Minnesota, 1995)
[91] R. W. M. Kwok, XPSPEAK 4.0, Department of Chemistry, The Chinese University of Hong Kong Shatin, Honk Kong, email: rmkwok@cuhk.edu.hk
[92] I. Jiménez and J. L. Sacedón, Influence of Si oxidation mrthods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: a synchrotron photoemission study, Surf. Sci. 482-485, 272 (2001)
[93] G.-M. Rignanese and A. Pasquarello, Nitrogen bonding configurations at nitrided Si(001) surfaces and Si(001)-SiO2 interfaces: A first-principles study of core-level shifts, Phys. Rev. B 63, 075307 (2001)
[94] M. Houssa, M. Naili, C. Zhao, H. Bender, M. M. Heyns and A. Stesmans, Effect of O2 post-deposition anneals on the properties of ultra-thin SiOx/ZrO2 gate dielectric stacks, Semicond. Sci. Tech. 16, 31 (2001)
[95] D. E. Aspnes, Optical properties of thin films, Thin Solid Films 89, 249 (1982)
[96] B. Johs, C. Herzinger, B. Guenther, WVASE32 Version 3.460, J. A. Woollam Co., Lincoln, NE USA
[97] E. Pelletier, Handbook of Optical Constants of Solids Ⅱ, E. D. Palik, Editor, (Academic, New York, 1991), p. 65.