簡易檢索 / 詳目顯示

研究生: 王昱博
Wang, Yu-Po
論文名稱: 船側減噪氣泡覆蓋行為之研究
Research on the Characteristics of Masker System Bubbles near Side Hulls
指導教授: 陳政宏
Chen, Jheng-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 氣泡幕系統流場觀測
外文關鍵詞: Masker belts, Flow visualization
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 船舶利用氣泡相關特性來提升部分效益已相當廣泛,而以氣泡幕降低噪音是近年來被重視的反潛方式。目前有諸多論文討論氣泡幕之聲學效應;相對地,氣泡幕流場觀測的公開論文卻較少,內容多是由聲學對氣泡特性來找出氣泡幕的氣泡粒徑。本研究利用水下攝影技術直接觀測氣泡幕的流場,配合三個黃銅管製氣泡帶,組合成五種不同的釋放條件,從船側觀測氣泡釋放之覆蓋情形。本研究延續黃景暉(2012)之水下攝影設備來捕捉觀察其差異。本實驗除了使用空氣,並使用二氧化碳與空氣氣體互相比較。
    實驗結果發現,氣泡在船速越快時,所生成之氣泡會相對較小。關於釋放氣體的不同,在本實驗中無明顯的差異,雖二氧化碳氣體之特性較易溶於水,但在船模實驗中,因為吃水至多僅二十公分,氣體於水中的時間過於短暫,溶於水的特性不及氣泡上昇所帶來的影響,故氣泡粒徑大小差異不大。

    The masker system has been used quite broadly. In recent years, it is important to reduce the noise by the masker belts in anti-submarine warfare(ASW). There are many papers discussing the acoustic effects of the masker belts, as opposed to the masker belts in flow visualization. Public papers are less and focus more on contents the acoustic characteristics of bubble related to the bubble size of the masker belts. We set three bubble belts with five release conditions. The present study uses underwater photography to observe the flow field of masker belts. The bubbles-covering situation is observed from the side of the ship model. Different gases, like carbon dioxide and air, are used to generate bubble for comparisons.
    Experimental results show that when ship speed is faster, the bubbles generated will be smaller. Different gases, have no significant effect on bubbles size in this experiment. Because even carbon dioxide is more soluble in water, the ship model draft is only twenty centimeters, such that gas has too short time in the water and the effect of solution is less then effect of bubble rising.

    摘要 I ABSTRACT II 致謝 III 表目錄 VI 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 研究目的 6 第二章 研究方法 7 2.1 實驗設備 7 2.1.1 拖航水槽 7 2.1.2 氣泡幕系統 8 2.1.3 水下光源與攝影設備 18 2.1.4 螺槳動力系統 22 2.2 氣泡形狀與拍攝 28 2.3 實驗流程 30 2.4 實驗參數 34 2.5 不確定性分析 37 第三章 結果與討論 39 3.1 結果 39 3.1.1 氣泡形狀 39 3.1.2 氣泡粒徑的分布 43 3.1.3 氣泡粒徑與釋放條件 48 3.1.4 氣泡粒徑與船速 65 3.1.5 氣泡粒徑與供氣流量 72 3.2 討論 79 3.2.1 關於氣泡粒徑 79 3.2.2 關於氣泡形狀 80 3.2.3 關於氣泡幕系統 80 3.2.4 關於氣體供應 81 3.2.5 關於實驗船模 81 3.2.6 關於水下攝影設備 82 3.2.7 關於水下光源 82 第四章 結論與未來展望 83 4.1 結論 83 4.2 未來展望 86 參考文獻 88 附錄 91

    Atsushi, S.; Jiro, F.; Katsuya, H., (2005) Measurements of Bubble Jets by 3D PTV and UVP, Dept. Mech. Engng., Doshisha Univ, Kyoto, Japan.
    Borowski, B.; Sutin, A.; Roh, H. S.; Bunin, B., (2008) Passive acoustic threat detection in estuarine environments. Proc. SPIE 6945, 694513.
    Barrau, E.; Rivière, N.; Poupot, Ch.; Cartellier, A., (1999) Single and double optical probes in air–water two-phase flows: real-time signal processing and sensor performance, Int. J. Multiphase Flow, Vol.25, pp.229-256.
    Cartellier, A.; Achard, J. L., (1991) Local phase detection probes in fluid/fluid two-phase flows, Rev. Sci. Instrum. 62, pp.279-303.
    Devin, C., (1959) Survey of thermal, radiation and viscous damping of pulsating air bubbles in water, J. Acoust. Soc. Am. Vol.31, pp.1654-1667.
    Doh, D. H.; Hwang, T. G., (2004) 3-D PTV Measurements of the Wake of a Sphere. Measurement Science Technology, Dept.Mech.Engng., Vol.15, pp. 1059-1066.
    Greated, C. A.; Emarat, N., (2000) Optical Studies of Wave Kinematics. Advances in Coastal and Ocean Engineering, Vol.6, pp.185-223.
    Hsiao, C.; Jain, A.; Chahine, G.L., (2006) Effect of gas diffusion on bubble entrainment and dynamics around a propeller, In: 26th Symposium on Naval Hydrodynamics, Rome, Italy.
    Hassan, Y. A.; Schmidl, W. D., (1998) Investigation of Three-dimensional Two-phase Flow Structure in a Bubbly Pipe, Measurement Science Technology, Vol.9, pp.309-326.
    Hsien, D. Y., (1965) On Dynamics of Bubby Liquids, Advances in Applied Mechanics, Vol.26, pp.63-96.
    James, P. J.; Alejandro, M. C., Pablo, M. C., (2010) Full-scale two-phase flow measurements on Athena research vessel, International Journal of Multiphase Flow, Vol.36, pp.720-737.
    Lerbs H., (1952) Moderately loaded propellers with a finite number of bladesn and an arbitrary distribution of circulation, In: SNAME Transactions, Vol.60, pp.73-117.
    Perlin, M.; He, J.; Bernal, L. P., (1996) An Experimental Study of Deep Water Plunging Breakers, Physics of Fluids., Vol.8, pp.2365-2374.
    Rodrigues, R. T.; Rubio, J., (2003) New basis for measuring the size distribution of bubbles, Miner. Eng., Vol.16, pp.757-765.
    Yamamoto, F.; Uemura, T.; Iguchi, M.; Ohta, J.; Wada, A.; Mori, K., (1993) 3D PTV based on binary image correlations method and its applications to a mixing flowwith a bubbling jet, in: Brebbia, C. A., Carlomagno, G. M. (eds) Computational methods and experimental measurements VI, Computational Mechanics, New York: Elsevier, pp.229-246.
    Yonguk, R.; Chang, K. A.; Lim, H. J., (2005) Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater, Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136.
    Yoshiaki K., Akira K., Takahito T., and Hideki K., (2000) Experimental Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction, International Journal of Heat and Fluid Flow, Vol.21, pp.582-588.
    Zhang, W.; Tan, R. B. H., (2003) A model for bubble formation and weeping at a submerged orifice with liquid cross-flow, Department of Chemical & Environmental Engineering National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
    王虹斌、張文光,(1990),艦艇氣幕降噪系統與設計思想,艦船科學技術,第二期,頁26-30。
    林武文,(2005),潛艦匿蹤技術,海軍學術月刊,第三十九眷,第一期,頁30。
    高占勝、石侃、遲衛、徐玉明,(2007),艦船特種自消隱氣幕技術研究,艦船科學技術,第二期,頁69-75。
    張宏煜,(2005),低頻聲波通過氣泡幕衰減特性之研究,國立成功大學水利及海洋工程研究所碩士論文。
    張宗宏,(1996),氣泡幕之聲學效應實驗研究,行政院國家科學委員會專題研究計畫成果報告NSC 85-2611-E-002-011。
    黃景暉,(2012),應用質點軌跡追蹤法於船殼降噪氣泡量測,國立成功大學系統及船舶機電工程研究所碩士論文。

    下載圖示 校內:2019-02-17公開
    校外:2019-02-17公開
    QR CODE