簡易檢索 / 詳目顯示

研究生: 逄佑家
Pang, You-Jia
論文名稱: 以電紡製備單一竹狀鈣鈦礦混聚合物奈米線之光致發光與雷射特性研究
Photoluminescence and Lasing Characteristics in Single Bamboo-like Perovskite@Polymer Nanofibers Fabricated by Electrospinning
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 77
中文關鍵詞: MAPbBr3鈣鈦礦納米纖維電紡法Fabry-Perot(FP)雷射
外文關鍵詞: MAPbBr3, Perovskite, Nanofiber, Electrospinning, Fabry-Perot lasing
相關次數: 點閱:83下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用單軸電紡法合成了MAPbBr3鈣鈦礦納米纖維。在這個過程中,我們採用PAN和PMMA兩種聚合物混合作為基質,以實現穩定性和光學性能的平衡。PAN提供了疏水特性,保護鈣鈦礦免受潮濕的影響,並通過其氮中孤對電子抑制缺陷的形成。PMMA具有透明性和低傳播損耗,非常適合光學上的應用。我們得到的納米纖維呈現出獨特的竹狀結構,這歸因於MAPbBr3的高濃度以及PAN和PMMA在溶劑蒸發過程中的熱誘導相分離。這些由聚合物包裹的鈣鈦礦納米纖維表現出強大而穩定的螢光效應及壽命,即使在長時間浸泡在水中後仍然保持穩定。此外,聚合物包覆還提高了鈣鈦礦在脈衝雷射照射下的抗紫外光性能。值得注意的是,竹狀纖維的節點處形成了高密度的MAPbBr3團簇或單晶,在脈衝雷射激發下呈現出雷射效應。觀察到的波導雷射行為可以歸因於Fabry-Pérot(FP)腔體,並且在激發功率超過閾值時形成。我們的這項研究展示了通過電紡法可以完成在混合鈣鈦礦及聚合物納米纖維中形成激光共振腔的可能性,並充分利用鈣鈦礦的增益介質特性,為光學元件的未來發展提供了新的方向。

    MAPbBr3 perovskite nanofibers were synthesized using the uniaxial electrospinning method. A blend of PAN and PMMA polymers was used as the matrix, aiming to achieve a balance between stability and optical performance. PAN provided hydrophobic characteristics for moisture protection and also helped suppress defects due to its nitrogen lone pairs. PMMA, known for its transparency and low propagation losses, was well-suited for photonic applications. The resulting nanofibers exhibited a distinct bamboo-like structure, attributed to the concentrated MAPbBr3 and the thermally induced phase separation of PAN and PMMA during solvent evaporation. These perovskite nanofibers, encapsulated by polymers, demonstrated robust and stable fluorescence even after immersion in water for extended periods. Additionally, the polymer coating enhanced the UV resistance of the perovskite under pulse laser illumination. Notably, high-density clusters or single crystals of MAPbBr3 formed at the junctions of the bamboo-like fibers, exhibiting lasing effects under pulsed laser excitation. The observed waveguide lasing behavior was attributed to the Fabry-Pérot (FP) cavity when the excitation power exceeded the threshold. This research provides insights into the future development of optical components by showcasing the formation of laser resonant cavities within hybrid perovskite@polymer nanofibers using electrospinning, capitalizing on the gain medium properties of perovskite.

    Table of Contents 摘要 I Abstract II Acknowledgements III Table of Contents V List of Tables VIII List of Figures IX Chapter 1. Introduction 1 1.1. Preface 1 1.2 Historical Review 4 1.2.1 Perovskite. 4 1.2.2 Fabry perot (F-P) mode cavity laser 10 1.3Motivation 12 Chapter 2. Physical Theories 13 2.1 Material properties of MAPbX3 peroskite 13 2.1.1. Crystal Struture 13 2.1.2 Point Defect 16 2.2 Optical Properties 17 2.2.1 Basic Optical properties 17 2.2.2. Photo-luminescence 19 2.3 Lasing in MAPbBr3 21 2.3.1 Carrier Dynamics in MAPbBr3 21 2.3.2 Single-Longtudinal Mode 22 2.3.3 Purcell Effect 22 Chapter 3. Experimental Setups 23 3.1 Synthesis of Perovskite Polymer Nanofiber (PPNF) 23 3.1.1 Electrospinning Method (ES) 23 3.2 Material Physical Characteristic Measurements 26 3.2.1 Scanning Electron Microscope (SEM) 26 3.2.2 Energy Dispersive Spectrometer (EDS) 28 3.2.3 High Resolution Transmission Electron Microscope (HRTEM) 30 3.2.4 X-ray Diffraction (XRD) 32 3.2.5 X-ray photoelectron spectroscopy (XPS) 34 3.2.6 Fourier-Transform Infrared Spectrometer (FTIR) 36 3.3 Measurement of Optical Properties 38 3.3.1 Micro Photoluminescence Spectroscopy (micro-PL) 38 3.3.2 Optical UV-VIS Absorption 40 3.3.3 Time-Resolved Photoluminescence (TRPL) 41 3.3.4 Fluorescence lifetime imaging microscopy 42 Chapter 4. Results & Discussions 43 4.1 Morphology & Structure analysis 43 4.1.1 Optical Images (OM) 43 4.1.3 High Resolution Transmission Electron Microscope (HRTEM) analysis 47 4.1.4 Photographs of PPNFs 50 4.1.5 Energy Dispersive Spectrometer (EDS) analysis 51 4.1.6 Fourier-Transform Infrared Spectrometer (FTIR) spectra Analysis 54 4.1.7 X-ray Diffraction (XRD) Analysis 56 4.2 Basic Optical Properties 57 4.2.1 Water resistant 57 4.2.2 Fluorescence Lifetime and Intensity 60 4.2.3 Time-Resolved PL analysis 62 4.2.4 Optical Absorption 63 4.3 Lasing Action Analysis 64 4.3.1 Lasing in network PPNFs 64 4.3.2 Fabry-Perot mode lasing 65 Chapt 5. Summary 70 5.1 Conclusion 70 5.2 Future work 71 Reference 72

    [1] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295-8.
    [2] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342(6156):341-4.
    [3] Chen Q, De Marco N, Yang Y, Song T-B, Chen C-C, Zhao H, et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 2015;10(3):355-96.
    [4] Zhou H, Cui X, Yuan C, Cui J, Shi S, He G, et al. Band-Gap Tuning of Organic–Inorganic Hybrid Palladium Perovskite Materials for a Near-Infrared Optoelectronics Response. ACS Omega. 2018;3(10):13960-6.
    [5] Sun J, Wu J, Tong X, Lin F, Wang Y, Wang ZM. Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells. Advanced Science. 2018;5(5):1700780.
    [6] Duong Ta V, Chen R, Ma L, Jun Ying Y, Dong Sun H. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser & Photonics Reviews. 2013;7(1):133-9.
    [7] Wang T, Chen W, Loi H-L, Gao W, Xu X, Zeng L, et al. Stable Single-Mode Lasing from a Hybrid Perovskite–Polymer Fiber. Advanced Optical Materials. 2022;10(15):2200439.
    [8] Wang Z, He H, Liu S, Wang H, Zeng Q, Liu Z, et al. Air Stable Organic-Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. Small. 2020;16(43):e2004409.
    [9] Tsai, Ping-Chun et al. “Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning.” Small (Weinheim an der Bergstrasse, Germany) vol. 14,22 (2018): e1704379.
    [10] Chen, Wei-Cheng et al. “Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability.” Small (Weinheim an der Bergstrasse, Germany) vol. 19,23 (2023): e2207685
    [11] Park N-G. Halide perovskite photovoltaics: History, progress, and perspectives. MRS Bulletin. 2018;43:527-33.
    [12] Mitchell RH, Welch MD, Chakhmouradian AR. Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineralogical Magazine. 2017;81(3):411-61.
    [13] Masood MT. Solution-Processable Compact and Mesoporous Titanium Dioxide Thin Films as Electron-Selective Layers for Perovskite Solar Cells 2020.
    [14] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050-1.
    [15] Best research-cell efficiency chart (accessed at 2023-07-01) https://www.nrel.gov/pv/interactive-cell-efficiency.html
    [16] Wang K, Zheng L, Hou Y, Nozariasbmarz A, Poudel B, Yoon J, et al. Overcoming Shockley-Queisser limit using halide perovskite platform? Joule. 2022;6(4):756-71.
    [17] Tan Z-K, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology. 2014;9(9):687-92.
    [18] Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, et al. Perovskite Light-Emitting Diodes with EQE Exceeding 28% through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation. Adv Mater. 2021;33(43):e2103268.
    [19] Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13(5):476-80.
    [20] Eaton SW, Lai M, Gibson NA, Wong AB, Dou L, Ma J, et al. Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences. 2016;113(8):1993-8.
    [21] Niu G, Guo X, Wang L. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A. 2015;3(17):8970-80.
    [22] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials. 2015;5(15):1500477.
    [23] Boyd CC, Cheacharoen R, Leijtens T, McGehee MD. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews. 2019;119(5):3418-51.
    [24] Ye Q, Zhao Y, Mu S, Ma F, Gao F, Chu Z, et al. Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination. Advanced Materials. 2019;31(49):1905143.
    [25] Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004;16(14):1151-70.
    [26] Babel A, Li D, Xia Y, Jenekhe SA. Electrospun Nanofibers of Blends of Conjugated Polymers:  Morphology, Optical Properties, and Field-Effect Transistors. Macromolecules. 2005;38(11):4705-11.
    [27] Gao W, Ge W, Shi J, Tian Y, Zhu J, Li Y. Stretchable, flexible, and transparent SrAl2O4:Eu2+@TPU ultraviolet stimulated anti-counterfeiting film. Chemical Engineering Journal. 2021;405:126949.
    [28] Chen J-Y, Wu H-C, Chiu Y-C, Chen W-C. Plasmon-Enhanced Polymer Photovoltaic Device Performance Using Different Patterned Ag/PVP Electrospun Nanofibers. Advanced Energy Materials. 2014;4(8):1301665.
    [29] Raghavan CM, Chen T-P, Li S-S, Chen W-L, Lo C-Y, Liao Y-M, et al. Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters. 2018;18(5):3221-8.
    [30] Fu Y, Zhu H, Stoumpos CC, Ding Q, Wang J, Kanatzidis MG, et al. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano. 2016;10(8):7963-72.
    [31] Alvarado-Leaños AL, Cortecchia D, Saggau CN, Martani S, Folpini G, Feltri E, et al. Lasing in Two-Dimensional Tin Perovskites. ACS Nano. 2022;16(12):20671-9.
    [32] Wang Y-C, Li H, Hong Y-H, Hong K-B, Chen F-C, Hsu C-H, et al. Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano. 2019;13(5):5421-9.
    [33] Zhang Q, Shang Q, Su R, Do TTH, Xiong Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters. 2021;21(5):1903-14.
    [34] Meyers RA. Encyclopedia of physical science and technology. 3rd ed. San Diego: Academic Press; 2002.
    [35] Vaughan JM. The Fabry–Perot Interferometer: History, Theory, Practice and Applications2017. 1-583 p.
    [36] Schawlow AL, Townes CH. Infrared and Optical Masers. Physical Review. 1958;112(6):1940-9.
    [37] Li J, Jiang M, Xu C, Wang Y, Lin Y, Lu J, et al. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity. Scientific Reports. 2015;5(1):9263.
    [38] Ni Y, Li X, Liang W, Zhang S, Xu X, Li Z, et al. Transformation of random lasing to Fabry–Perot lasing: observation of high temperature lasing from carbon dots. Nanoscale. 2021;13(16):7566-73.
    [39] Goldschmidt VM. Die Gesetze der Krystallochemie. Naturwissenschaften. 1926;14(21):477-85.
    [40] Nagabhushana GP, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc Natl Acad Sci U S A. 2016;113(28):7717-21.
    [41] Jesper Jacobsson T, Correa-Baena J-P, Pazoki M, Saliba M, Schenk K, Grätzel M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science. 2016;9(5):1706-24.
    [42] Fan Z, Sun K, Wang J. Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. Journal of Materials Chemistry A. 2015;3.
    [43] Onoda-Yamamuro N, Yamamuro O, Matsuo T, Suga H. p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals. Journal of Physics and Chemistry of Solids. 1992;53(2):277-81.
    [44] Guo W, Chen N, Xu B, Lu Y, Li B, Wu T, et al. Stability of Hybrid Organic-Inorganic Perovskite CH(3)NH(3)PbBr(3) Nanocrystals under Co-Stresses of UV Light Illumination and Temperature. Nanomaterials (Basel). 2019;9(8).
    [45] Sharma SK, Phadnis C, Das TK, Kumar A, Kavaipatti B, Chowdhury A, et al. Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials. 2019;31(9):3111-7.
    [46] Sun S, Lu M, Gao X, Shi Z, Bai X, Yu WW, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science. 2021;8(24):2102689.
    [47] Mannodi-Kanakkithodi A, Park JS, Cao DH, Jeon N, Martinson ABF, Chan MKY, editors. First-principles Study of Intrinsic and Extrinsic Point Defects in Lead-Based Hybrid Perovskites. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC); 2018 10-15 June 2018.
    [48] Tang M-C, Dang HX, Lee S, Barrit D, Munir R, Wang K, et al. Wide and tunable bandgap MAPbBr3− xClx hybrid perovskites with enhanced phase stability: in situ investigation and photovoltaic devices. Solar RRL. 2021;5(4):2000718.
    [49] Wei J-H, Wang X-D, Liao J-F, Kuang D-B. High Photoluminescence Quantum Yield (>95%) of MAPbBr3 Nanocrystals via Reprecipitation from Methylamine-MAPbBr3 Liquid. ACS Applied Electronic Materials. 2020;2(9):2707-15.
    [50] Laamari ME, Cheknane A, Benghia A, Hilal HS. Optimized opto-electronic and mechanical properties of orthorhombic methylamunium lead halides (MAPbX3) (X = I, Br and Cl) for photovoltaic applications. Solar Energy. 2019;182:9-15.
    [51] Ganeev R, Konda SR, Yu Z, Yu W, Yao C, Fu Y, et al. Strong nonlinear absorption in perovskite films. Optical Materials Express. 2018;8:1472.
    [52] Wei T-C, Mokkapati S, Li T-Y, Lin C-H, Lin G-R, Jagadish C, et al. Nonlinear Absorption Applications of CH3NH3PbBr3 Perovskite Crystals. Advanced Functional Materials. 2018;28(18):1707175.
    [53] Wei Q, Du B, Wu B, Guo J, Li Mj, Fu J, et al. Two-Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced Optical Materials. 2017;5(24):1700809.
    [54] Einstein A. Zur Quantentheorie der Strahlung. Physikalische Zeitschrift. 1917;18:121-8.
    [55] Zhang Y, Lou X, Chi X, Wang Q, Sui N, Kang Z, et al. Manipulating hot carrier behavior of MAPbBr3 nanocrystal by photon flux and temperature. Journal of Luminescence. 2021;239:118332.
    [56] Xing J, Zhao C, Zou Y, Kong W, Yu Z, Shan Y, et al. Modulating the optical and electrical properties of MAPbBr(3) single crystals via voltage regulation engineering and application in memristors. Light Sci Appl. 2020;9:111.
    [57] Diroll BT. Temperature-Dependent Intraband Relaxation of Hybrid Perovskites. The Journal of Physical Chemistry Letters. 2019;10(18):5623-8.
    [58] Chen J, Messing ME, Zheng K, Pullerits T. Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals. Journal of the American Chemical Society. 2019;141(8):3532-40.
    [59] Mix LT, Ghosh D, Tisdale J, Lee M-C, O’Neal KR, Sirica N, et al. Hot Carrier Cooling and Recombination Dynamics of Chlorine-Doped Hybrid Perovskite Single Crystals. The Journal of Physical Chemistry Letters. 2020;11(19):8430-6.
    [60] Qin J, Liu X-K, Yin C, Gao F. Carrier Dynamics and Evaluation of Lasing Actions in Halide Perovskites. Trends in Chemistry. 2021;3(1):34-46.
    [61] Jahangiri M, Moradiani F, Parsanasab G-M, Mirmohammadi M. High side-mode suppression ratio with a Vernier effect single-mode laser using triple coupled microrings. Scientific Reports. 2023;13(1):7092.
    [62] Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Physical review. 1946;69(1-2):37.
    [63] Purcell EM. Spontaneous emission probabilities at radio frequencies. Confined Electrons and Photons: New Physics and Applications. 1995:839-.
    [64] Khurgin JB, Noginov MA. How Do the Purcell Factor, the Q-Factor, and the Beta Factor Affect the Laser Threshold? Laser & Photonics Reviews. 2021;15(3):2000250.
    [65] Purcell Effect and the Evaluation of Purcell and Spontaneous Emission Factors. In: Gu Q, Fainman Y, editors. Semiconductor Nanolasers. Cambridge: Cambridge University Press; 2017. p. 65-90.
    [66] Björk G, Heitmann H, Yamamoto Y. Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. Physical Review A. 1993;47(5):4451-63.
    [67] Hui R. Chapter 5 - Optical amplifiers. In: Hui R, editor. Introduction to Fiber-Optic Communications: Academic Press; 2020. p. 155-207.
    [68] Romeira B, Fiore A. Purcell Effect in the Stimulated and Spontaneous Emission Rates of Nanoscale Semiconductor Lasers. IEEE Journal of Quantum Electronics. 2018;PP.
    [69] Zhao Y, Han W, Song J, Li X, Liu Y, Gao D, et al. Spontaneous emission factor for semiconductor superluminescent diodes. Journal of Applied Physics. 1999;85(8):3945-8.
    [70] Li L, Jiang Z, Li M, Li R, Fang T. Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Adv. 2014;4(95):52973-85.
    [71] Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L. Quantum-dot-doped polymer nanofibers for optical sensing. Adv Mater. 2011;23(33):3770-4.
    [72] Tsai PC, Chen JY, Ercan E, Chueh CC, Tung SH, Chen WC. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning. Small. 2018;14(22):e1704379.
    [73] Chen C, Wang X, Li Z, Du X, Shao Z, Sun X, et al. Polyacrylonitrile-Coordinated Perovskite Solar Cell with Open-Circuit Voltage Exceeding 1.23 V. Angew Chem Int Ed Engl. 2022;61(8):e202113932.
    [74] Glaser T, Muller C, Sendner M, Krekeler C, Semonin OE, Hull TD, et al. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. J Phys Chem Lett. 2015;6(15):2913-8.
    [75] Sun H, Yang Z, Wei M, Sun W, Li X, Ye S, et al. Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications. Adv Mater. 2017;29(34).
    [76] Chen L-S, Huang Z-M, Dong G-H, He C-L, Liu L, Hu Y-Y, et al. Development of a transparent PMMA composite reinforced with nanofibers. Polymer Composites. 2009;30(3):239-47.
    [77] Kumar P, Muthu C, Vijayakumar C, Narayan KS. Quantum Confinement Effects in Organic Lead Tribromide Perovskite Nanoparticles. The Journal of Physical Chemistry C. 2016;120(32):18333-9.
    [78] De Giorgi, M.L., et al., Amplified Spontaneous Emission Properties of Solution Processed CsPbBr3 Perovskite Thin Films. The Journal of Physical Chemistry C, 2017. 121(27): p. 14772-14778.
    [79] Wu, C.S., et al., Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement. ACS Appl Mater Interfaces, 2021. 13(11): p. 13556-13564.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE