簡易檢索 / 詳目顯示

研究生: 歐祥程
Ou, Hsiang-cheng
論文名稱: 數值模擬應用於均質進氣柴油引擎之排氣汙染研究
Study of Numerical Simulation on The Exhaust Emission of Homogeneous Charge Diesel Engine
指導教授: 吳鴻文
Wu, Horng-wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 排氣污染數值模擬密閉式循環柴油引擎均質壓燃式引擎
外文關鍵詞: numerical simulation, homogeneous charge compression ignition, exhaust pollution, close cycle diesel engine (CCDE)
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 均質壓燃式引擎(HCCI)可降低柴油引擎的污染物生成,因均質壓燃式引擎需採用進氣過程時形成的均質混合氣,所以進行不同預混合比之燃氣對均質壓燃式引擎的汙染物分析是非常重要的。
    本文針對KUBOTA RK-125 型之單缸直噴式柴油引擎進行數值模擬,以KIVA3V-RELEASE2為程式主體,藉由修改程式的汙染計算模式,進行數值運算。分析在不同引擎轉速及不同比例的預混合燃氣下,引擎所產生的汙染物,包含氮氧化物、二氧化碳、一氧化碳、碳煙濃度及碳煙平均顆粒大小,並將模擬的結果與實驗及文獻比較。
    本研究已成功地完成導入各種預混合氣(甲醇、乙醇和汽油)的HCCI引擎污染物模擬分析。模擬結果顯示,使用醇類預混合氣的HCCI引擎對於污染物的降低確實優於使用汽油及一般柴油引擎,且以氮氧化物及碳煙造成的效果最顯著,且隨著比例的增加將會使燃燒更完全,因而不易產生碳煙及氮氧化物;但需注意若比例過高有可能影響引擎性能或其他污染物的生成量。未來期望本研究的燃燒性能模擬對HCCI引擎安裝在密閉式循環柴油引擎系統 (CCDE系統採用HCCI引擎)時有參考的價值。

    The homogeneous charge compression ignition (HCCI) engine can reduce the formulation of pollutant. Because the homogeneous charge compression ignition needs to adopt the formation of homogeneous mixture gas in the intake process, it is very important to analyze the combustion performance of a homogeneous charge compression ignition engine with different intake premixed gases and their contents.
    This article is aimed at the KUBOTA RK-125 which is a single cylinder direct injection diesel engine, and carries out the numerical simulation. KIVA3V-RELEASE2 is used as the subject of the program, according to modifying the models of the pollution. The emissions including nitrogen oxides (NOx), carbon dioxide(CO2), carbon monoxide(CO), soot concentration and soot average particle diameter, in homogeneous charge compression ignition engine are calculated under different proportions of intake gas and different engine speeds, and the results between the simulation and the experiment will be compared .
    The research has already incorporated the premixed gas (gasoline, ethanol and methanol) simulation successfully in the HCCI engine of exhaust emission. The simulation results show that premixed gas of alcohol is better than gasoline and a diesel engine in decreasing exhaust emissions, and the result is conspicuous for the reduction of NOx and Soot emission. For the premixed gas, both NOx and soot can be reduced by the increase of premixed ratio simultaneously, but to affecting other emission and engine performance may exist as the proportion is too high. The simulation combustion process in this research is expected to be a reference value when the CCDE system installs with HCCI engine in the future.

    目錄 摘要………………………………………….…………….………………...Ⅰ Abstract………………… ……………………………….…………....…….Ⅱ 致謝……………………………………………...……..…............................Ⅲ 目錄…………………………………………….………..…………..………Ⅳ 表目錄……………………………………………….....………....................Ⅶ 圖目錄………………………………………...............………………..........Ⅷ 符號說明………………………………………………………………….ⅩⅢ 第一章 緒論…………………………………………………….…….……...1 1-1 研究目的及背景………………………………………..………1 1-2 文獻回顧……………………………………………….……….4 1-3 研究方向與貢獻...……………………………………………...9 第二章 理論模式…………………………………………………………...10 2-1 問題描述………………………………………………............10 2-2 系統之假設及邊界條件….…………………………………...11 2-3 統御方程式……………………………………………………12 2-3.1 氣相統御方程式……………………………………….12 2-3.2 液相統御方程式……………………..………………...15 2-4 引擎燃燒模式……………………………………………........18 2-5氮氧化物(NOx)生成模式…….……………………….……….21 2-6碳煙(Soot)計算模式…….…………………………….……….22 2-6.1碳煙的生成………………………………..……………23 2-6.2碳煙的氧化……………………………..………………25 第三章 數值方法及研究方法……………………………………………...27 3-1 KIVA程式簡介……………………………..…………............27 3-2 格點系統………..….………………………….………….......29 3-2.1 網格點定義……………………..……………………..30 3-3 數值方法介紹…………………………..……….……………31 3-4 研究方法………………………….…………………..……....32 3-4.1 KIVA-3V電腦程式架構……………………………….32 3-4.2 KIVA-3V主要參數設定……………………………….33 第四章 結果與討論.......................................................................................35 4-1實驗、文獻與模擬分析之比較………………….……..……..35 4-1.1 實驗與數值模擬比較……………………….…………36 4-1.2 文獻與數值模擬比較…………………….……………37 4-2不同預混合比對於引擎排放污染物特性的影響….............…38 4-2.1 1800rpm下 不同輔助燃料及預混合比對污染物的影響.....38 4-2.2 1500rpm下 不同輔助燃料及預混合比對污染物的影響.....40 4-2.3 1200rpm下 不同輔助燃料及預混合比對污染物的影響.....40 4-3 氣缸中溫度分布對污染物的影響............................................41 4-4 NOx在氣缸中生成的分布情形……………………………….43 第五章 結論與未來展望...............................................................................45 5-1 結論…………………………………………………….……...45 5-2 未來展望……………………………………………….……...47 參考文獻……………………………………………………………..……...49 自述…………………………………………………………..…………….102 表目錄 表一 輔助燃料和柴油混合後的CN值……………………………………...21 表二KUBOTA RK125 型直噴式柴油引擎規格………………………….55 表三 碳煙質量濃度和BSU煙度轉換表………………………………….56 圖目錄 圖1 碳煙模式及計算原理..........................................................................57 圖2 氣缸幾何外型格點圖………………………………………………...58 圖3 KIVA-3V運作流程圖……………………………………………….59 圖4 KIVA程式運作流程圖……………………………….……………..60 圖5 KIVA程式運作流程圖(續)………………………………………61 圖6 1800rpm 添加甲醇10% 實驗及模擬壓力比較圖………………….62 圖7 1800rpm 添加乙醇10% 實驗及模擬壓力比較圖………………….62 圖8 1800rpm 添加汽油10% 實驗及模擬壓力比較圖………………….63 圖9 使用汽油為輔助燃料時,實驗與模擬之NOx排放比較................63 圖10 使用乙醇為輔助燃料時,實驗與模擬之CO2排放比較………….64 圖11 使用甲醇為輔助燃料時,實驗與模擬之CO排放比較..................64 圖12 使用甲醇為輔助燃料時,實驗與模擬之碳煙濃度排放比較…......65 圖13 Gregory【28】以KIVAⅡ模擬柴油引擎之NOx生成曲線……...65 圖14 Gregory【28】以KIVAⅡ模擬噴油對碳煙顆粒大小的影響…….66 圖15 Feng Tao【37】使用KIVA預測柴油引擎的碳煙濃度…………..66 圖16 Kong【38】以KIVA-3V模擬引擎之CO2、CO生成曲線……...67 圖17 添加輔助燃料30%之溫度分布曲線圖(1800rpm)……………….....67 圖18預混合比10%時,不同預混合燃氣之氣缸內NOx生成量…………68 圖19預混合比20%時,不同預混合燃氣之氣缸內NOx生成量…………68 圖20預混合比30%時,不同預混合燃氣之氣缸內NOx生成量…………69 圖21甲醇在三種預混合比下,氣缸內NOx生成量比較..........................69 圖22預混合比10%時,不同預混合燃氣之氣缸內CO生成量………….70 圖23預混合比20%時,不同預混合燃氣之氣缸內CO生成量………….70 圖24預混合比30%時,不同預混合燃氣之氣缸內CO生成量………….71 圖25甲醇在三種預混合比下,氣缸內CO生成量比較………………….71 圖26預混合比10%時,不同預混合燃氣之氣缸內CO2生成量…………72 圖27預混合比20%時,不同預混合燃氣之氣缸內CO2生成量…………72 圖28預混合比30%時,不同預混合燃氣之氣缸內CO2生成量…………73 圖29甲醇在三種預混合比下,氣缸內CO2生成量比較………………...73 圖30預混合比10%時,不同預混合燃氣之氣缸內碳煙濃度分布………74 圖31預混合比20%時,不同預混合燃氣之氣缸內碳煙濃度分布………74 圖32預混合比30%時,不同預混合燃氣之氣缸內碳煙濃度分布……….75 圖33預混合比10%時,不同預混合燃氣之氣缸內碳煙顆粒大小……….75 圖34預混合比20%時,不同預混合燃氣之氣缸內碳煙顆粒大小……….76 圖35預混合比30%時,不同預混合燃氣之氣缸內碳煙顆粒大小……….76 圖36添加輔助燃料30%之溫度分布曲線圖(1500rpm)…………………...77 圖37預混合比10%時,不同預混合燃氣之氣缸內NOx生成量…….......77 圖38預混合比20%時,不同預混合燃氣之氣缸內NOx生成量…….......78 圖39預混合比30%時,不同預混合燃氣之氣缸內NOx生成量…….......78 圖40預混合比10%時,不同預混合燃氣之氣缸內CO生成量…….........79 圖41預混合比20%時,不同預混合燃氣之氣缸內CO生成量…….……79 圖42預混合比30%時,不同預混合燃氣之氣缸內CO生成量…….……80 圖43預混合比10%時,不同預混合燃氣之氣缸內CO2生成量…………80 圖44預混合比20%時,不同預混合燃氣之氣缸內CO2生成量…………81 圖45預混合比30%時,不同預混合燃氣之氣缸內CO2生成量…………81 圖46預混合比10%時,不同預混合燃氣之氣缸內碳煙濃度分布………82 圖47預混合比20%時,不同預混合燃氣之氣缸內碳煙濃度分布……….82 圖48預混合比30%時,不同預混合燃氣之氣缸內碳煙濃度分布………83 圖49預混合比10%時,不同預混合燃氣之氣缸內碳煙顆粒大小………83 圖50預混合比20%時,不同預混合燃氣之氣缸內碳煙顆粒大小………84 圖51預混合比30%時,不同預混合燃氣之氣缸內碳煙顆粒大小………84 圖52添加輔助燃料30%之溫度分布曲線圖(1200rpm)…………………..85 圖53預混合比10%時,不同預混合燃氣之氣缸內NOx生成量………..85 圖54預混合比20%時,不同預混合燃氣之氣缸內NOx生成量………..86 圖55預混合比30%時,不同預混合燃氣之氣缸內NOx生成量………..86 圖56甲醇在三種預混合比下,氣缸內NOx生成量比較………………..87 圖57預混合比10%時,不同預混合燃氣之氣缸內CO生成量………......87 圖58預混合比20%時,不同預混合燃氣之氣缸內CO生成量………….88 圖59預混合比30%時,不同預混合燃氣之氣缸內CO生成量………….88 圖60甲醇在三種預混合比下,氣缸內CO生成量比較………………….89 圖61預混合比10%時,不同預混合燃氣之氣缸內CO2生成量…………89 圖62預混合比20%時,不同預混合燃氣之氣缸內CO2生成量…………90 圖63預混合比30%時,不同預混合燃氣之氣缸內CO2生成量…………90 圖64甲醇在三種預混合比下,氣缸內CO2生成量比較…………………91 圖65預混合比10%時,不同預混合燃氣之氣缸內碳煙濃度分布………..91 圖66預混合比20%時,不同預混合燃氣之氣缸內碳煙濃度分布………..92 圖67預混合比30%時,不同預混合燃氣之氣缸內碳煙濃度分布……….92 圖68預混合比10%時,不同預混合燃氣之氣缸內碳煙顆粒大小……….93 圖69預混合比20%時,不同預混合燃氣之氣缸內碳煙顆粒大小………93 圖70預混合比30%時,不同預混合燃氣之氣缸內碳煙顆粒大小…........94 圖71 1800rpm 純柴油 之缸內X-Z平面溫度分佈……………………..95 圖72 1800rpm 汽油 30 % 之缸內X-Z平面溫度分佈………………...95 圖73 1800rpm 乙醇 30% 之缸內X-Z平面溫度分佈………………...96 圖74 1800rpm 甲醇 30% 之缸內X-Z平面溫度分佈…………………96 圖75 1800rpm 無添加 氣缸內NOx 分布圖……………………………97 圖76 1800rpm 甲醇30% 氣缸內NOx 分布圖………………………..98 圖77 1800rpm 甲醇20% 氣缸內NOx 分布圖………………………..99 圖78 1800rpm 甲醇10% 氣缸內NOx 分布圖……………………...100 圖79 1800rpm 甲醇30% 氣缸溫度分佈圖…………………………..101

    參考文獻
    1. Jphn B.Heywood 著,蘇金佳 譯;"內燃機";美商麥格羅.希爾國際股份有限公司出版;pp.4-6,pp.645-717,1996.

    2. S:Onishi, S.Hong JO, et al, “Active Themo-Atmosphere Combustion(ATAC)-A New Combustion Process for Internal Combustio Engines”,SAE 790501, 1979.

    3. Magnus Christensen, Anders Hultqvist et al, “Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio” SAE 1999-01-3679, 1999.

    4. Magnus Christensen,et al, “Influence of Mixture Quality on Homogeneous Charge Compression Ignition. ” SAE982454, 1998.

    5. Hisakazu Suzuki,et al. “Combustion Control Method of Homogeneous Charge Diesel Engines”, SAE980509, 1998.

    6. 吳鴻文, “密閉式循環柴油引擎於進氣處使用輔助燃料噴射之運轉性能及排氣污染效應之研究(II),” 第十九屆中國造船暨輪機工程研討會暨國科會成果發表會,民國96年。

    7. 陳啟聰,“柴油引擎以天然氣為輔助燃料之燃燒循環變異與燃燒噪音之研究,” 國立成功大學機械工程研究所碩士論文,1989年。

    8. Thomas W. Ryan III and Timothy J. Callahan, “Homogeneous Charge Compression Ignition of Diesel Fuel”, SAE 961160, 1996.

    9. Dr Thomas ,W Ryan Iii ,Allen W Gray Iii, “Homogeneous Charge Compression Ignition (Hcci) of Diesel Fuel”, SAE971676, 1997.

    10. R. Ogink , V. Golovitchev, “Gasoline Hcci Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes”, SAE International Fall Fuels & Lubricants Meeting & Exhibition,, San Antonio, TX, USA, 2001.

    11. Petti Taskinen, “Effect of Soot Radiation on Flame Temperature,NOx-Emission and Wall Heat Transfer in A Medium Speed Diesl Engine” ASME & ICE2002-535, 2002.

    12. 王建盺,關小光,程勇,蔣恒飛,“乙醇-柴油混合燃料的燃燒與排放特性”,內燃機學報,vol.20 n3,p225-229,2002。

    13. 黃佐華,聲紅兵,蔣德明,曾科,劉兵,張俊強,王錫斌,“Study on Combustion Characteristics of a DI Diesel Engine Operating on Diesel/Methanol Blends”,內燃機學報,vol.21 n6p401-410,2003。

    14. Song-Charng Kong , Rolf D. Reitz, et al. “Modelling the Effects of Geometry-Generated Turbulence on HCCI Engine Combustion”,SAE World Congress & Exhibition, March 2003, Detroit, MI, USA, 2003.

    15. 鄭博鴻,"均質進氣壓縮點火引擎之研究",碩士論文,國立海洋大學輪機所,中華民國93年6月。
    16. Kim, Dae Sik; Kim, Myung Yoon; Lee, Chang Sik “Effect of premixed gasoline fuel on the combustion characteristics of compression ignition engine” Energy and Fuels, v 18, n 4,p1213-1219, July/August, 2004.

    17. Mingfa Yao; Zheng Chen; Zunqing Zheng;Bo Zhang; Yuan Xing “Study on The Controlling Strategies of Homogeneous Charge Compression Ignition Combustion with Fuel of Dimethy Ether and Methanol” State Key Laboratory of Engines, Tianjin University, No.92 , 2005

    18. Myung Yoon Kim; Dae Sik Kim; Chang Sik Lee “Reduction of Nitric Oxides and Soot by Premixed Fuel in Partial HCCI Engine,” Joural of Engineering for Gas Turbines and Power, Vol.128, 2006

    19. 李智勝,“均質進氣壓燃式引擎之進氣對燃燒特性之效應研究,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2006年7月。

    20. 吳展易,“KIVA-3V應用在密閉式柴油引擎在不同進氣組成下之燃燒模擬與分析,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2005年7月。

    21. Amsden, A.A.,P. J. O.Rourke and T.D. Butler, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory report LA-11560-MS, May, 1989.

    22. Amsden, A.A. , “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory report LA-12503-MS, March, 1993.

    23. Amsden, A.A., “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves,” Los Alamos National Laboratory report LA-13313-MS, July, 1997.

    24. Stull D.R. and Prophet, H., ”JANAF Thermochemical Tables,” 2nd ed..N.W.Chase et al.,J.Phys. Chem.Ref.Data 3,311, 1974.
    .
    25. Amsden, A.A. ,“KIVA-3V, Release 2, Improvments to KIVA-3V,” Los Alamos National Laboratory report LA-13608-MS, May, 1999.

    26. Simescu, S.; Ryan, T. W.; Neely, G. D.; Matheaus, A. C. ;Surampudi , B. SAE Tech. Pap. Ser. 2002 ,2002-01-0964.

    27. Lu Xingcal, Chen Wei, Ji Libin, Huang Zhen, “The Effects External Exhaust Gas Recirculation and Cetane Number Improver on The Gasoline Homogenous Charge Compression Ignition Engines,” Sci. and Tech., 178: 1237-1249 , 2006

    28. 蘇仁政,“高效率柴油引擎燃燒模擬與分析”國立成功大學航空太空工程學系研究所碩士論文, 2002年6月。

    29. J. Hampson and Rolf D. Reitz, “Development of NOx and Soot Model for Multidimensional Diesel Combustion,” ASME Environ Control Div Publ EC, v1, p187-198, 1995

    30. Surovikin, V.F, “Analytical Description of the Processes of Nucleus-Formation and Growth of Carbon Black in the Thermal Decomposition of Aromatic Hydrocarbons in the Gas Phase,” Khimiya Tverdogo Topliva, vol. 10, No.1, pp. 111-122 , 1976
    31. N. Sung, S. Lee, H. Kim, B. Kim, “A Numerical Study on Soot Formation and Oxidation for a Direct Injection Diesel Engine,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng. No.217 P403-413, 2003

    32. Hirt, C.W., Amsden, A.A. & Cook, J.L., “An Arbitrary Lagrangian – Eulerian Computing Method for All Flow Speeds,” Journal of Computational Physics, Vol.14, pp.227-253, 1974.

    33. Riavard, W.C., Farmer, O.A. & Bulter, T.D., “RICE: A Computer Program for Multi-component Chemically Reactive Flows at All Speeds,” Los Alamos Scientific Laboratory Report, LA-5812-MS, 1979.

    34. Butler, T.D., Cloutman, L.D., Dukowicz, J.K., & Ramshaw, J.D., “CONCHAS: An Arbitrary Lagrangian - Eulerian Computer Code for Multicomponent Chemically Reactive Fluid Flow at All Speeds,” Los Alamos Scientific Laboratory Report, LA-8129-MS, 1979.

    35. Cloutman, L.D., Dukowicz, J.K., Ramshaw, J.D. & Amsden, A.A.,“CONCAS-SPRAY: A Computer Code for Reactive Flow with Fuel Sprays,”Los Alamos Scientific Laboratory Report, LA-9294-MS, 1982.

    36. Amsden, A.A., Butler, T.D., O’Rourke, P.J. & Ramshaw, J.D., “KIVA-AComprehensive Model for 2-D and 3-D Engine Simulation,” SAE paper 850554, pp.1-15, 1985.
    37. 歐東哲,“柴油引擎於進氣處使用輔助燃料噴射之運轉性能及排氣污染效應之研究,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2007年7月。

    38. Feng Tao, Valeri I. Golovitchev, Jerzy Chomiak., “A Phenomenological Model for The Prediction of Soot Formation in Diesel Spray Combustion,” Theermo and Dynamics, Department of Mechanical Engineering , Chalmers University of Technology. SE-412 96 Goteborg, Sweden. 2003

    39. Kong Song-Charng, “A Study of Natural gas/DEM Combustion in HCCI Engines using CFD with Detailed Chemical Kinetics,” Science Direct, Fuel 86 1483-1489. 2007

    下載圖示 校內:2012-09-10公開
    校外:2012-09-10公開
    QR CODE