簡易檢索 / 詳目顯示

研究生: 曾乾生
Tzeng, Chian-Sheng
論文名稱: 薄刃鑽頭之刀具路徑設計與加工
Tool Path Design and Manufacturing of Thin-Webbed Drills
指導教授: 林昌進
Lin, Psang Dain
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 162
中文關鍵詞: 腹板鑽頭工具機D-H座標設定法則薄刃法
外文關鍵詞: drill, web thinning, web, D-H notation, machine tools
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「改變鑽頭的鑽頂幾何和腹板厚度」已是目前更深入開發高性能鑽頭被廣泛接受的方法,薄刃法(web-thinning)則是最普遍使用的方法。薄刃法可用於降低鑽頭的鑽削推力和初始鑽削的自走現象,是藉由修磨傳統鑽頭的腹板而達到修短鑿刃的目的,因而產生一對相同形狀的小溝槽(即新次切刃),以此種方法修磨而得的鑽頭稱為薄刃鑽頭(thin-webbed drill)。長久以來,當鑽頭是新品或磨損而須重新磨銳的情況,經常見修磨鑽頭腹板部位,使鑿刃變短或恢復磨損前的長度,得以改善或恢復鑽頭的鑽削性能,目前這種修磨鑽頭腹板觀念已被納入新品鑽頭的設計概念。
    本研究第一個主題是配合六軸數控工具機的使用,建立薄刃鑽頭設計/加工的數學模式,是基於ISO標準的斜角角度規範,求得修磨雙槽鑽頭腹板的研磨輪方位矩陣(即研磨位姿)而產生一對新次切刃,稱為成形法。成形法可由新次切刃最外角落點的已知斜角角度值,加工切削得到直線的小溝槽(即直刃次切刃)。為驗證理論的正確性,以實驗方式成功加工出一支傳統鑽頭和一支以成形法加工的薄刃鑽頭。
    前面提出的成形法使用單一形狀研磨輪,可研磨出直線形狀的次切刃,但無法指定沿次切刃的角度分佈。本研究的第二個主題是將成形法的數學模式加以擴展,使可以任意指定次切刃的曲線形狀及沿次切刃的角度分佈,稱為創成法。因創成法具任意指定的特性,故可使次切刃曲線與原主切刃曲線的連接更為平順甚且可消除尖銳的交點。於此,二支實驗薄刃鑽頭已成功被加工,用於驗證理論推導的正確性。
    本研究最後一個主題是陳述有關工具機切削精度的問題,分別為:(1)哪一個連桿參數(稱為主動參數)會影響被切削工件的加工精度? (2)如何以研磨輪做為量測測頭,進行主動參數的量測?為了達成以上的目的,我們使用修正型的D-H座標設定法則為六軸工具機建模,所需的NC數值函數被推導成含工具機連桿參數的函數。由NC數值函數發現,工具機的連桿參數可被區分成「主動參數」和「非主動參數」,若欲經多軸數控工具機切削得到正確的加工尺寸,則須要量得主動參數值和工件原點座標值。於此,由NC數值函數觀點,陳述了一種量測技巧,即令研磨輪為量測測頭,量得工具機的主動參數和被加工件的工件原點。最後,以薄刃鑽頭切削為實例,驗證理論的正確性。

    Changes in the design of drill’s web and point geometry have been widely used into the deeper investigations of a high performance drill. A common web-thinning method now is accepted as a means of the investigations. The web- thinning methods have evolved to reduce the thrust force and improve the initial penetration by reducing the chisel length through thinning the web with different notch-type cuts. Traditionally, twist drills are reconditioned by thinning the web so the correct chisel edge length is restored. Recently, thinning has been included in the original design of drills so as to reduce torque and tool force. The first topic in this study presents a system for precise mathematical modeling and CNC control of a 6-axis grinding workstation for drill thinning. The presented method (namely forming method) determines the position and orientation of the grinding wheel based on the evaluated rake and clearance angles of ISO standards for 2-flute twist drills. It is suitable for linear notch-type cutting with controlled variable rake angle along the secondary cutting edge for purposes of thinning, notching, dubbing and advanced drill research. For verification and demonstration, two experimental drills are produced to the identical ISO standard except that one is thinned. The modeling herein is of value to industry and research if incorporated into computer software for drill design and manufacture.
    Researchers commonly develop mathematical models to produce thinned/notched drill points with secondary cutting edges, but their models cannot freely assign the distribution of rake angles along the secondary cutting edges. Consequently, it cannot comprehensively specify these thinned/notched drill points. Our earlier work presented a mathematical model for thinned/notched drill-design and we used single grinding wheel to manufacture an ISO-standard drills with linear secondary cutting edges. The second topic discussed a more flexible mathematical model (namely generation method). The earlier model is expanded herein to drill points with a specifiable secondary cutting edge and its rake angle distribution. Since of this, the entire cutting edge can be provided with continuity to eliminate stress points. Two experimental drills are produced and tested for verification and demonstration. The presented modeling technique allows subsequent researchers to exactly duplicate the drills including the thinning/notching drill points, a capability that was previously unavailable. This system is useful for improved drill CAD and CNC software for the design, manufacture, reconditioning, and research of novel point design.
    The complex structures of a multi-axis machine tool may produce inaccuracies at the tool tip caused by dimensional errors in the machine’s link parameters. The final topic discussed in this study, it addresses two important issues for precision machining: (1) which link parameters (denoted as active parameters) of a machine tool can affect the machining accuracy of a workpiece; and (2) how to measure the active parameters by using a grinding wheel as a measuring probe. To achieve this, a modified Denavit-Hartenberg (D-H) notation is introduced to model a multi-axis machine tool. The NC data equations are then derived in terms of the machine’s link parameters. It is found that the link parameters of a machine tool can be divided into two types: active and nonactive parameters. The prerequisite for obtaining an accurately machined workpiece is to have correct values of the active parameters and the workpiece home position. Based on the developed NC data equations of a multi-axis machine tool, this paper also addresses the technique of using a grinding wheel as a measuring probe to determine the active parameters and the workpiece home position. Experimental results are also given with illustrative examples.

    摘要 i 英文摘要 iii 誌謝 v 目錄 vi 表目錄 x 圖目錄 xi 符號說明 xv 第一章 緒論 1 1.1問題敘述 1 1.2 鑽頭各部位名稱及特性 4 1.3 鑽頭之文獻回顧 8 1.4齊次座標轉換矩陣 22 1.5 D-H座標設定法則 23 1.6研究方法與內容概要 25 第二章 傳統雙槽鑽頭設計 27 2.1研磨輪刀具定義 28 2.2鑽槽曲面設計 32 2.3鑽腹曲面設計 37 2.4其它的鑽頂幾何 40 2.5 ISO刀具角度規範 43 2.6雙槽鑽頭數值模擬和實體幾何圖 56 第三章 成形法薄刃鑽頭設計 60 3.1薄刃鑽頭背景及沿革簡介 60 3.2薄刃鑽頭主要向量 62 3.3薄刃研磨輪定義 63 3.4成形法薄刃鑽頭數學模型 65 3.5成形法薄刃鑽頭模擬 78 第四章 創成法薄刃鑽頭設計 82 4.1 創成法薄刃鑽頭數學模型 83 4.2 創成法薄刃鑽頭模擬 100 第五章 多軸工具機建模和主動參數量測 104 5.1簡介 104 5.2修正型D-H座標設定法則 107 5.3六軸工具機正向運動學 111 5.4六軸工具機逆向運動學 116 5.5六軸工具機各軸初始偏置量 117 5.6六軸工具NC數值函數 121 5.7主動參數和工件原點對切削精度的影響 122 5.8主動參數和工件原點量測 125 第六章 薄刃鑽頭加工實驗與結果 134 6.1工具機功能函數與NC數值函數 134 6.2雙槽鑽頭研磨 137 6.2.1鑽槽規劃的工件位姿矩陣和NC數值函數 137 6.2.2鑽腹規劃的工件位姿矩陣和NC數值函數 138 6.2.3雙槽鑽頭加工結果 141 6.3成形法研磨次鑽槽 142 6.3.1次鑽槽規劃的工件位姿矩陣和NC數值函數 142 6.3.2成形法薄刃鑽頭加工結果 143 6.4創成法研磨次鑽槽 144 6.4.1次鑽槽規劃的工件位姿矩陣和NC數值函數 144 6.4.2創成法薄刃鑽頭加工結果 145 6.5冗餘量測加工結果 146 6.6傳統和薄刃鑽頭幾何尺寸量測結果 148 第七章 結論與建議 149 7.1結論與建議 149 7.2未來發展方向 151 參考文獻 152 自述 162 表 目 錄 表2.1 ISO 刀具手持系統的基準平面定義 46 表2.2刀具手持系統的假想平面系統 刀具角度規範 47 表2.3刀具手持系統的正交平面系統 刀具角度規範 48 表2.4刀具手持系統的法向系統 刀具角度規範 49 表2.5 ISO刀具使用系統的基準平面定義 50 表2.6工作法向平面系統對切刃的刀具角度規範平面 51 表2.7工作法向平面系統對切刃刀具角度規範平面的單位法向量 54 表2.8工作法向平面系統對鑿刃刀具角度規範平面的單位法向量 55 表2.9雙槽鑽頭的設計及加工參數值 57 表3.1次切刃特性角的規範 74 表3-2成形法薄刃鑽頭設計的已知參數值 79 表4.1創成法薄刃鑽頭使用的參數 101 表5.1修正型D-H 法則的連桿參數表 112 表6.1主動參數和工件原點量測值 136 表6.2冗餘量測數據比較表 147 表6.3傳統和薄刃鑽頭幾何尺寸量測數據表 148 圖 目 錄 圖1-1鑽頭各部位名稱 4 圖1-2各式修磨鑽頭圖形 9 圖1-3三斜角鑽頭 9 圖1-4螺旋點鑽頭 10 圖1-5圓形中心切刃鑽頭 10 圖1-6裂口鑽頭的幾何外形 11 圖1-7二次曲線鑽頭的研磨架構 12 圖1-8劈刃鑽頭的研磨步驟 14 圖1-9多面鑽 15 圖1-10平面鑽頭研磨示意圖 16 圖1-11螺旋微鑽頭的研磨架構 17 圖1-12圓形中心切刃鑽頭 17 圖1-13三槽鑽頭示意圖 18 圖1-14連桿座標系相對位置 24 圖2-1傳統三槽鑽頭和雙槽鑽頭示意圖 27 圖2-2研磨輪母線及其單位法線與切線 28 圖2-3錐形研磨輪的母線 30 圖2-4盤式研磨輪的母線 31 圖2-5鑽槽切削幾何關係 33 圖2-6鑽腹研磨幾何關係 39 圖2-7鑽頭主運動方向與進給運動方向 44 圖2-8假想平面系統的基準平面 47 圖2-9正交平面系統的基準平面 48 圖2-10法向平面系統的基準平面 49 圖2-11工作法向平面系統的刀具平面及刀具角度 52 圖2-12平面 及 夾角在量測平面 的求法 53 圖2-13鑽槽截面輪廓線 57 圖2-14鑽頭數值模擬結果 58 圖2-15鑽頭實體幾何圖形 58 圖2-16雙槽鑽頭沿鑿刃及主切刃的特性角分佈 58 圖3-1鑽頭主要向量 62 圖3-2第三研磨輪定義和外形輪廓 64 圖3-3雙槽鑽頭常見的腹板型式 66 圖3-4研磨次鑽槽的研磨輪位姿 67 圖3-5成形法薄刃鑽頭次切刃外形數值模擬圖 80 圖3-6成形法薄刃鑽頭實體幾何圖形 80 圖3-7沿薄刃鑽頭鑿刃、主切刃和次切刃動態特性角度分佈 81 圖4-1次切刃的曲線規劃 84 圖4-2次切槽的研磨位姿 94 圖4-3創成法曲刃薄刃鑽頭的數值模擬 101 圖4-4創成法直刀與曲刃薄刃鑽頭的實體幾何圖形 102 圖4-5創成形薄刃鑽頭的特性角分佈圖 103 圖5-1 Ewag 六軸數控工具磨床照片 105 圖5-2虛擬Ewag工具機和座標系設定示意圖 107 圖5-3修正型D-H法則的座標系 設定 109 圖5-4相鄰連桿是正交軸的座標系統設定 110 圖5-5相鄰連桿是平行軸的座標系設定 111 圖5-6桿件座標系設定分解示意圖 115 圖5-7刀具座標系和工件座標系原點重合位置圖 120 圖5-8研磨輪的母線 123 圖5-9第一次量測得到 值 127 圖5-10第二次量測得到 值 128 圖5-11第三次量測得到 值 129 圖5-12第四次量測得到 值 130 圖5-13第五次量測得到 值 131 圖5-14第六次量測得到 值 132 圖5-15第七和八次量測得到 和 值 132 圖6-1新研磨輪 與原研磨輪 座標系相對位置 140 圖6-2雙槽鑽頭成品照片 141 圖6-3成形法薄刃鑽頭成品照片 143 圖6-4創成形薄刃鑽頭(曲線次切刃)成品照片 145 圖6-5創成形薄刃鑽頭(直線次切刃)成品照片 146 圖6-6薄刃鑽頭切削失敗案例照片 147 圖6-7工具顯微鏡照片 148

    [1] M.F. DeVries, M.K. Crosheck and H. Negish ,“An Investigation of the Cutting Mechanisms of the New Point Drill”, Annals of the CIRP Vol.37/1, pp.73-77, 1988.
    [2] Tetsutaro Hoshi, Hualin Zhao and Toshiaki Hosoi, “Study of a High Performance Drilling Geometry”, Annals of the CIRP Vol.38/1, pp.87-90, 1989.
    [3] Makoto Ogawa and Kazuo Nakaama ,“Effects of Chip Splitting Nicks in Drilling”, Annals of the CIRP Vol.34/1, pp.101-104, 1985.
    [4] D. F. Galloway, "Some Experiments on the Influence of Various Factors on Drill Performance," Trans. ASME, J. of Eng. for Ind., Vol. 79, pp191-231, 1957
    [5] H. Ernst and W. A. Haggerty, "The Spiral Point Drill-a New Concept in Drill Point Geometry " Trans. ASME, J. of Eng. for Ind., Vol. 80, pp.1059-1072, 1958
    [6] R. A. Williams , “Dynamic geometry of a twist drill “, Int. J. Prod. Res. , Vol. 7, pp. 253-267, 1969.
    [7] R. A. Williams , “A study of the basic mechanics of the chisel edge of a twist dirll“, Int. J. Prod. Res. , Vol. 8, pp. 325-343, 1970.
    [8] R. A. William , “A study of the drilling process“, Trans. ASME, J. of Eng. for Ind., pp.1207-1215, 1974.
    [9] W. D. Tsai and S. M. Wu ,”Computer analysis of drill point geometry”, Int. J. Mach. Tool. Des. ,Vol. 19, pp. 95-108, 1979.
    [10] W .D. Tsai and S. M. Wu , ”A mathematical model for drill point design and grinding”, ASME Journal of Engineering for Industry, Vol. 101, pp.333-340, 1979.
    [11] D. J. Billau and P. F. McGoldrick, "An Analysis of the Geometry of the Periphery of the Flank Face of Twist Drills Ground with Cylindrical and Conical Forms," International Journal Machine Tools Design & Research Vol.19, pp.69-86, 1979
    [12] M. A. Fugelso, ”cylindrical flank twist drill points”, ASME J. of Engineering for Industry, Vol. 105, pp.183-186, 1983.
    [13] M. A. Fugelso, "Conical Flank Twist Drill Points," International Journal Machine Tools & Manufacture Vol.30, pp.291-295, 1990
    [14] T. Radhakrishnan, S. M. Wu, and C. Lin , "A Mathematical Model for Split Point Drill Flanks," Trans. ASME, J. of Eng. for Ind., Vol.105 Aug., pp.137-142, 1983.
    [15] S. M. Wu and J. M. Shen, ”Mathematical model for multifacet drills”, ASME Journal of Engineering for Industry, Vol.105, pp.173-182 , 1983.
    [16] L. H. Chen and S. M. Wu, "Further Investigation of Multifacet Drills –Mathematical Models, Methods of Grinding, and Computer Plotting," Trans. ASME, J. of Eng. for Ind., Vol.106 pp.313-324, 1984.
    [17] Horing-Tsann Huang, Cheng-I Weng, and Chao-Kuang Chen, "Analysis of Clearance and Rake Angles Along Cutting Edge for Multifacet Drills," Trans. ASME, J. of Eng. for Ind., Vol.116 Aug., pp.8-16, 1994.
    [18] Horing-Tsann Huang, Cheng-I Weng, and Chao-Kuang Chen , "Prediction of Thrust and Torque for Multifacet Drills (MFD)," Trans. ASME, J. of Eng. for Ind., Vol.116 Aug. pp.1-7, 1994.
    [19] Ger-Chwang Wang and Kung-Hwa Fuh, "A New Mathematical Model for Multifacet Drills Derived by Using Angle-Solid Model," International Journal Machine Tools & Manufacture Vol.41, pp.103-132, 2001
    [20] S. Ema, H. Fujii, E. Marui, and S. Kato, "New Type Drill with Three Major Cutting Edge," International Journal Machine Tools Design & Research Vol.28, pp.461-473, 1988.
    [21] S. Ema, H. Fujii, and E. Marui, "Cutting performance of drills with three cutting edges (Effects of chisel edge shapes on the cutting performance)," International Journal Machine Tools&Manufacture, Vol.31, pp.361-369, 1991.
    [22] E. J. A. Armarego, A. J. R. Smith and Z. J. Gong , “Four Plane Facet Point Drills-Basic Design and Cutting Model Predictions”, Annals of the CIRP Vol.39/1, pp.41-45, 1990.
    [23] C. Lin, S. K. Kang, and K.F. Ehmann , "Helical Micro-Drill Point Design and Grinding," Trans. ASME, J. of Eng. for Ind., Vol.117 Aug., pp.277- 287, 1995.
    [24] E .J. A. Armarego, H. Zhao and Parkville, ”Predictive Force Models for Point-Thinned and Circular Centre Edge Twist Drill Designs”, Annals of the CIRP Vol.45/1, pp.65-70 , 1996.
    [25] T. Radhakrishnan, R. K. Kawlra, and S. M. Wu , ”A mathematical model of the grinding wheel profile required for a specific twist drill flute”, Int. J. Machine. Tool. Des. Res. , Vol. 22 NO.4, pp. 239-251 , 1982.
    [26] K. F. Ehmann , "Grinding Wheel Profile Definition for the Manufacture of Drill Flutes, " Annals of the CIRP Vol.39, pp.153-156, 1990.
    [27] Jung-Fa Hsieh and P. D. Lin, "Mathematical Model of Multi-flute Drill Point," International Journal Machine Tools & Manufacture Vol.42, pp.1181-1193, 2002
    [28] Jung-Fa Hsieh and P. D. Lin , "Production of multi-flute drills on 6-axis CNC tool grinding machine", International Journal Machine Tools & Manufacture Vol.43, pp.1117-1127, 2003.
    [29] S. K. Kang, K.F. Ehmann, and C. Lin, "A Cad Approach to Helical Groove Machining Part1: Mathematical Model and Model Solution," International Journal Machine Tools & Manufacture Vol.36, pp.141-153, 1996.
    [30] S. K. Kang, K.F. Ehmann, and C. Lin, "A Cad Approach to Helical Groove Machining Part2: Number Evaluation and Sensitivity Analysis," International Journal Machine Tools &Manufacture Vol.37, pp.101-117, 1997.
    [31] Kuang-Hua Fuh, and Wen-Chou Chen, "Cutting Performance of Thick Web Drills with Curved Primary Cutting Edges," International Journal Machine Tools & Manufacture Vol.35, pp.975-991, 1995
    [32] S. Kaldor, Rafael Ada Mod and D. Messinger, "On the CAD of Profiles for Cutters and Helical Flutes-Geometrical Aspects," Annals of the CIRP Vol.37, pp.53- 56, 1988
    [33] D. S. Sheth and S. Malkin, "CAD/CAM for Geometry and process Analysis of Groove Machining," Annals of the CIRP Vol.39, pp.129-132, 1990.
    [34] R. A. Etheridge , "An Analysis of the Interference Produced When Milling A Helical Slot with Disc Type Cutter," International Journal Machine Tools & Research Vol.10, pp.143-157, 1970.
    [35] R. H. Thornley, A. B. Elhab, I. EL Wahab and J. D. Maiden, "Some Aspects of Twist Drill Design," International Journal Machine Tools Manufacture, Vol.27, pp. 383 -397, 1987.
    [36] M. A. Fugelso and S. M. Wu , “An analysis and categorization of twist drill grinding machines”, Int. J. Mach. Tool. Des. Vol. 20, pp. 223-234 , 1980.
    [37] M. A. Fugelso, "A Standard Conical Point Drill Grinding Machine," International Journal Machine Tools & Manufacture Vol.41, pp.915-922, 2001
    [38] M. A. Fugelso and S. M. Wu, "A Microprocessor Controlled Twist Drill Grinder for Automated Drill Production," Trans. ASME, J. of Eng. for Ind., Vol.101 May, pp.205- 210, 1979
    [39] W. D. Tsai and S. M. Wu , "Computer Analysis of Drill Point Geometry," International Journal Machine Tools Design& Research Vol.19, Nov., pp.95-108, 1979.
    [40] S. Fujii, M. F. Devries and S. M. Wu , "Analysis and Design of a Drill Grinder and Evaluation of Grinding Parameter," Trans. ASME, J. of Eng. for Ind., Vol.94, pp.1157-1163, 1972.
    [41] S. Fujii, M. F. DeVries and S. M. Wu, " An Analysis of Drill Geometry for Optimum Drill Design by Computer-I: Drill Geometry Analysis " Trans. ASME, J. of Eng. for Ind., Vol.92, pp.647-656, 1970
    [42] S. Fujii, M. F. DeVries and S. M. Wu, "An Analysis of Drill Geometry for Optimum Drill Design by Computer-II: Computer Aided Design," Trans. ASME, J. of Eng. for Ind., Vol. 92, pp.657-666, 1970
    [43] R. Komanduri, "Some aspect of machining with negative rake tools simulating grinding", International Journal Machine Tools Design& Research Vol.11, pp.223-233, 1971.
    [44] S. Kaldor , "A Common Denominator for Optimal Cutting Tool Geometry" Annals of the CIRP Vol.35, pp.41-44, 1986.
    [45] S. Kaldor and E. Lenz, "Drill Point Geometry and Optimization," Trans. ASME, J. of Eng. for Ind., Trans. ASME, J. of Eng. for Ind., Vol.104 Feb. pp.84-90, 1982.
    [46] S. Kaldor and K. Moore , "Drill Point Designing by Computer," Annals of the CIRP Vol.32, pp.27-31, 1983.
    [47] E. .J .A. Armarego and C. Y. Cheng, “drilling with flat rake face and conventional twist drills-1 theoretical investigation “, Journal of machine tool design & research Vol. 12, pp. 17-35, 1972.
    [48] E. J. A. Armarego and C. Y. Cheng, “drilling with flat rake face and conventional twist drills-2 theoretical investigation “, Journal of machine tool design & research Vol. 12, pp. 37-54, 1972.
    [49] E. J. A. Armarego and A. Rotenberg, "An Investigation of Drill Point Sharpening by the Straight Lip Conical Grinding Method-I. Basic Analysis," International Journal Machine Tools Design& Research Vol.13, pp.155-164, 1973
    [50] E. J. A. Armarego and A. Rotenberg, "An Investigation of Drill Point Sharpening by the Straight Lip Conical Grinding Method-II. a Criterion for Selecting a Solution," International Journal Machine Tools Design& Research Vol.13, pp.165-182, 1973.
    [51] E. J. A. Armarego and A. Rotenberg, "An Investigation of Drill Point Sharpening by the Straight Lip Conical Grinding Method-III. Drill point grinder design features" International Journal Machine Tools Design& Research Vol.13, pp.233-241, 1973.
    [52] A. R. Watson , "Specification of the Cutting Geometry of Single Point Tools and Twist Drills Using the ISO System," International Journal Machine Tools Design& Research Vol.17, pp.103-116, 1977.
    [53] A. R. Watson, " Geometry of Drill Elements", International Journal Machine Tools Design& Research Vol.25, pp.209-227, 1984.
    [54] Watson A. R., "Drilling Model for Cutting Lip and Chisel Edge and Comparison of Experimental and Predicted Result I-Initial Cutting Lip Model," International Journal Machine Tools Design& Research Vol.25, pp.347-365, 1985.
    [55] A. R. Watson , "Drilling Model for Cutting Lip and Chisel Edge and Comparison of Experimental and Predicted Result III-Drilling Model for Chisel Edge", International Journal Machine Tools Design& Research Vol.25, pp. 377-392, 1985.
    [56] A. R. Watson , "Drilling Model for Cutting Lip and Chisel Edge and Comparison of Experimental and Predicted Result IV-Drilling Model for Chisel Edge", International Journal Machine Tools Design& Research Vol.25, pp. 393-404, 1985.
    [57] A. Bhattacharyya, A. B. Chatterjee and I. Ham, “modification of drill point for reducing thrust”, ASME Journal of Engineering for Industry, VOL 93, pp. 1073-1078, 1971.
    [58] A. Bhattacharyya,“chisel edge modification of small HSS and carbide drills for improved machinability”, Annals of the CIRP Vol.30/1/1981,pp.21-25, 1981.
    [59] S. S. LAW, M. F. DeVRIES and S. M. WU, “Analysis of Drill Stress by Three-Dimension Photoelasticity”, ASME Journal of Engineering for Industry, November, 1972, pp.965-970, 1972.
    [60] J. Agullo-Batlie, S. Cardona-Foix, and C. Vinas-Sanz , "On The Design of Milling Cutters or Grinding Wheels for Twist Drill Manufacture, A Cad Approach," Proc.25th Int. Machine Tool Des. Res. Cof., pp. 315-320, 1985.
    [61] S. Ravinder, " Symbolic and Computational Conjugate Geometry for the Manufacture of Helically Swept Surfaces," Transactions of NAMRI/SME Vol. 20, pp. 277-282, 1992
    [62] J. S. Agapiou, "Design Characteristics of New Types of Drill and Evaluation of Their Performance Drilling Cast Iron - II. Drills with Four Major Cutting Edges," International Journal Machine Tools & Manufacture Vol.33, pp. 321-341, 1993
    [63] J. S. Agapiou, "Design Characteristics of New Types of Drill and Evaluation of Their Performance Drilling Cast Iron- II. Drills with Three Major Cutting Edges," International Journal Machine Tools&Manufacture Vol.33, pp. 343-365, 1993
    [64] W. D. Tasi and S. M. Wu , "Measure and Control of the Drill Point Grinding Process," International Journal Machine Tools Design&Research Vol.19, pp. 109-120,1979.
    [65] J. D. Wright, "An Analysis of Conical Drill Point Grinding-the Generation Process and Effects of Setting Errors," Annals of the CIRP Vol.32, pp.1-5, 1983
    [66] H. C. Chyan and K. F. Ehmann, "Development of Curved Helical Micro-Drill Point Technology for Micro-Hole Drilling," Mechatronics 8 pp.337-358, 1998
    [67] Hosoi, Ryosuke, Fugelso, and A. Mark, "A Five Axis Computer Controlled Twist Drill Grinder," International Journal Machine Tools Design & Research Vol.24, pp.321-329, 1984.
    [68] M. A. Fugelso, "Kinematic Synthesis of a Three-Axis Twist Drill Point Grinding Machine," Trans. ASME, J. of Eng. for Ind., Vol.107 Nov. pp.343-348, 1985
    [68] J. D. Vangesness and M. A. Fugelso, "Closed Form Solution of Kinematic Equations for The Mechanism of a Twist Drill Grinding Machine," Mech. Mach. Theory Vol.30 pp.193-199, 1995
    [69] C. J. Oxford, "On the Drilling of Metals-1: Basic Mechanics of the Process," Trans. ASME, J. of Eng. for Ind., Vol.77, pp 103-114, 1955
    [70] A. S. Salama and A. H. Elsawy, "The Dynamic Geometry of A Twist Drill Point," Journal of Materials Processing Technology Vol.56 pp.45-53, 1996
    [71] Wen-Chou Chen and Kuang-Hua Fuh, "Design Optimization of a Split-Point Drill by Force Analysis," Journal of Materials Processing Technology Vol.58 pp.14-322, 1996
    [72] S. J. Lee, K. F. Ehmann, and S. M. Wu, "An Analysis of the Drill Wander Motion," Trans. ASME, J. of Eng. for Ind., Vol.109, pp.297-305, 1987
    [73] Psang Dain Lin and Ing Jyh Tsai, "The Machining and On-Line Measurement of Spatial Cams on Four-Axis Machine Tools," International Journal Machine Tools & Manufacture Vol.36, pp.89-101, 1996
    [74] Psang Dain Lin and Ming Far Lee, "NC Generation for 4-Axis Machine Tools Equipped with Rotary Angle Head Attachments to Produce Variable Pitch Screw," International Journal Machine Tools & Manufacture Vol.37, pp.341-353, 1997
    [75] Psang Dain Lin and Min Ben Chu, "Machine Tools Setting for Cams with Flat-Face Followers," International Journal Machine Tools & Manufacture Vol.34, pp.1119-1131, 1994
    [75] G. Dhande, "Geometric Modeling of Manufacturing Processes Using Symbolic and Computational Conjugate Geometry," Trans. ASME, J. of Eng. for Ind., Vol. 117, August, pp.288-296, 1995
    [76] K. F. Ehmann, S. K. Kang, and C. Lin, "Sensitivity Analysis and Tolerance Allocation for Micro-planar Drill Point Grinders," Annals of the CIRP Vol.41, pp.361-365, 1992
    [77] P. D. Lin, and M. F. Lee, "Applications of D-H Notation in Machining and On-Line Measurement of Roller-Gear Cams on 5-Axis Machine Tools," Transactions of the ASME Journal of Manufacturing Science and Engineering Vol.119, pp.393-401, 1997
    [78] R. P. Paul, "Robot Manipulators-Mathematics," Programming and Control, MIT press, Cambridge, Mass. 1982
    [79] G. Boothroyd, "Fundamentals of Metal Machining and Machines Tools," McGraw-Hill, Englewood Cliffs, NJ, 1975
    [80] D. N. Deshetov, "Accuracy of Machine Tools," ASME, press, New York, 1988
    [81] 謝榮發,"多槽鑽頭設計與研磨",博士論文,國立成功大學機械研究所,2003
    [82] J. Denavit, R. S. Hartenberg ,"A Kinematic Notation for Lower Pair Mechanisms Based on Matrices ", ASME, J. of Appl. Mech., Vol.77, pp.215-221, 1955.
    [83] 馮弘毅,"雙槽鑽頭之設計",碩士論文,國立成功大學機械研究所,1997
    [84] 黃宏燦,"多面鑽幾何參數與鑽削性之研究",博士論文,國立成功大學機械研究所,1988
    [85] 林銘福,"鑽頭螺旋槽與二次曲線鑽頂之研磨",碩士論文,國立成功大學機械研究所,2000
    [86] 林銘福,"橢圓刃球端銑刀與階梯銑刀之設與分析",博士論文,國立成功大學機械研究所,2006.
    [87] 曾乾生,"Ewag 六軸 CNC 工具磨床之研究",碩士論文,國立成功大學機械研究所,2003

    下載圖示 校內:2013-01-24公開
    校外:2013-01-24公開
    QR CODE