簡易檢索 / 詳目顯示

研究生: 莊偉民
Chuang, Wei-Ming
論文名稱: 利用波形分類和波形重定改善近岸Envisat測高資料-以新竹香山濕地為例
Improvement of Envisat measurement by Waveform Classification and Retracking:A case study of Hsiang-Shan wetland in Hsinchu
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 衛星測高波形分類波形重定香山濕地
外文關鍵詞: coastal altimetry, waveform classification, waveform retracking, Hsiang-Shan wetland
相關次數: 點閱:99下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來衛星測高已成為提供高精度海水面的重要觀測工具之一,然而將其應用在近岸0~5 km仍舊有精度不佳的問題。香山濕地為許多瀕臨絕種生物的棲息地,也是東亞太水鳥保護網之一,極具保護價值,正受到海水面上升所威脅。因此,本研究將改善此區域的Envisat測高資料精度,以提供正確的海水面高度資料。本研究利用18Hz Envisat RA-2 Cycle 10 ~ Cycle 90 SGDR波形資料,結合線性判別分析(Linear Discriminant Analysis, LDA)與最近鄰居分類器(k-Nearest Neighbors Classifier, k-NN)進行波形分類,然後將分類出之海洋反射波形以不同波形重定演算法(包含Cruve Fit、Ice-1、Ocean、Threshold和 Modified Threshold演算法)重定來求得海水面高度,最後以新竹驗潮站和EGM2008大地起伏模型評估成果精度。本研究發現使用LDA搭配k-NN比起單獨使用k-NN的波形分類,近岸0~5km Ice-1波形重定後Envisat高度與驗潮站差值之標準偏差(Standard Deviation, STD),由0.26 m減少至0.17 m;然而,使用LDA於波形分類在5~10 km的差值STD卻是沒有明顯改善的,其原因為開闊海域下多屬於海洋波形,單獨使用k-NN即能獲得良好的分類效果。而使用LDA搭配k-NN分類後,能大幅改善於近岸0~5 km區域的精度,表現最好的波形重定為Ice-1演算法,與新竹驗潮站差值之STD由1.14 m提升至0.17 m,與未使用波形重定比較,其改善率(Improvement Percentage , IMP)為77.4%。與EGM2008差值之STD由1.26 m減少至0.20 m,IMP為82.2%。在開闊海域5~10 km的部分,其波形大多屬於海洋反射波形,經過波形重定重定後的STD即小於0.3 m以下,使用LDA搭配k-NN分類後只能些微改進精度,同樣也是Ice-1演算法表現最佳,與新竹驗潮站差值之STD由0.27 m減少至0.21 m,IMP為51.4%。與EGM2008差值之STD由0.30 m減少至0.22 m,IMP為58.6%。

    Satellite radar altimetry becomes an irreplaceable tool to provide accurate surface height measurements over open oceans. However, the accuracy decreases when altimeters approach coastlines or non-ocean surfaces due to the improper geophysical corrections and complex returned waveforms. Many waveform retracking algorithms have been developed for improving the accuracy of non-ocean reflected altimetry data; however, the performance still cannot achieve the same accuracy as that in open oceans. In coastal regions, some waveforms reflected from non-ocean surfaces lead to the worse retracking results. Therefore, waveform classification methods are needed to distinguish if waveforms are truly reflected from oceans. Waveform classification used in this study includes two steps. The first step is applying Linear Discriminant Analysis (LDA) to reduce the dimensionality of original features’ spaces for classification. The second step is using k-Nearest Neighbors Classifier (k-NN) to separate waveforms into two groups: ocean and non-ocean waveforms. Afterward, we remove the non-ocean waveform before doing retracking. In this study, we use Envisat altimetry data over Hsiang-Shan wetland in Hsin-Chu, which is located in Northwestern Taiwan. The satellite-derived results are then evaluated using Hsin-Chu tide gauge data. In the case of distance from coastline 0~5 km, after waveform classification, the best performance retracker is ice-1 and standard deviation of the difference between tide gauge and ice-1 improve from 1.140 m to 0.173 m. Finally, we expect building an effective classification method and figuring out the most appropriate retracking algorithm applied for this study area.

    摘 要 I EXTENDED ABSTRACT II 誌謝 VIII 目 錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究動機與文獻回顧 1 1-2 論文架構 5 第二章 衛星測高原理及介紹 6 2-1 衛星測高歷史 6 2-2 衛星測高基本原理 10 2-3 ENVISAT測高衛星介紹 14 2-4 資料介紹 18 2-4-1 Envisat資料處理及介紹 18 2-4-2 本研究使用之Envisat資料及改正 20 第三章 研究方法與流程 23 3-1 衛星測高波形 23 3-1-1 近岸波形 25 3-2 波形分類方法 28 3-2-1 LDA 28 3-2-2 k-NN 32 3-3 波形重定 33 3-3-1 Off-set Center of Gravity(OCOG)演算法 34 3-3-2 Threshold 演算法 35 3-3-3 Modified Threshold 演算法 37 3-3-4 Ice-1 演算法 39 3-3-5 Ocean 演算法 40 3-3-6 CurveFit 演算法 41 3-4 研究流程 43 第四章 香山溼地近岸ENVISAT資料精度提升 44 4-1 研究區域與資料 44 4-1-1 研究區域 44 4-1-2 研究資料 45 4-2 特徵萃取與訓練樣本 49 4-2-1  特徵萃取 49 4-2-2 訓練樣本 51 4-3 LDA於改善近岸測高資料之影響 54 4-3-1 投影維度 54 4-3-2 評估LDA對波形分類之影響 56 4-4 研究成果與分析 58 4-4-1 與驗潮站資料比較 58 4-4-2 與EGM2008比較 63 第五章 結論與建議 67 參考文獻 70

    汪一航, 方國洪, 魏澤勳, 王永剛, & 王新怡. (2010). 基於衛星高度計的全球大洋潮汐模式的準確度評估. 地球科學進展, 25(4), 353-362.
    柯寶貴, 章傳銀, 常曉濤, & 張利明. (2015). 聯合 Topex/Poseidon 與 Envisat 高度計數據監測我國大陸地表覆蓋變化. 測繪學報, 44(9), 1048-1055.
    高煥欽 (2010)。台灣附近波形重定之測高資料精度評估(碩士論文)。國立成功大學測量及空間資訊所。
    鄭又嘉 (2014)。衛星測高於台灣地層下陷監測之應用(碩士論文)。國立成功大學測量及空間資訊所。
    楊亭宜 (2014)。利用波形重定改善近岸與內陸小水體之Envisat測高資料(碩士論文)。國立成功大學測量及空間資訊所碩士論文。
    郭金運, 常曉濤, 孫佳龍, &高永剛 (2013)。衛星雷達測高波形重定及應用。中國:測繪出版社。
    閻克勤, & 王櫻燕. (2007). 新竹香山濕地海岸生態環境資訊調查系統之建立. 地理資訊系統季刊, 1(4), 16-24.
    Anthoff D, Nicholls RJ, Tol RSJ, & Vafeidis AT (2006). Global and regional exposure to large rises in sea-level: a sensitivity analysis. Tyndall Centre for climate change Research Working paper, 96
    AVISO (1996). AVISO USER HANDBOOK MERGED TOPEX/POSEIDON PRODUCTS (3rd ed.).
    Bamber, J. L. (1994). Ice sheet altimeter processing scheme. International Journal of Remote Sensing, 15(4), 925-938.
    Brown, G. (1977). The average impulse response of a rough surface and its applications. IEEE transactions on antennas and propagation, 25(1), 67-74.
    Cabanes, C., Cazenave, A., & Le Provost, C. (2001). Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294(5543), 840-842.
    Cartwright, D. E., & Tayler, R. J. (1971). New computations of the tide-generating potential, Geophysical Journal International, 23(1), 45-73.
    Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics, Geophysical Journal International, 33(3), 253-264.
    Chaudhary, A., Basu, S., Kumar, R., Mahesh, C., & Sharma, R. (2015). Shape Classification of AltiKa 40-Hz Waveforms using Linear Discriminant Analysis and Bayes Decision Rule in the Gujarat Coastal Region, Marine Geodesy, 38(1), 62-72.
    Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., & Callahan, P. S. (2001). Satellite altimetry. International geophysics, 69, 1-131.
    Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4-5), 585-602.
    COASTALT (2011), Envisat Coastal Altimetry Product Handbook.
    Davis, C. H. (1997). A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 974-979.
    Deng, X., & Featherstone, W. E. (2006). A coastal retracking system for satellite radar altimeter waveforms: Application to ERS-2 around Australia. Journal of Geophysical Research, 111, C06012.
    Desai, S., Chander, S., Ganguly, D., Chauhan, P., Lele, P. D., & James, M. E. (2015). Waveform Classification and Water-Land Transition over the Brahmaputra River using SARAL/AltiKa & Jason-2 Altimeter. Journal of the Indian Society of Remote Sensing, 43(3), 475-485.
    Duan, Z., & Bastiaanssen, W. G. M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403-416.
    Duda, R. O., Hart, P. E., & Stork, D. G. (1973). Pattern classification. Wiley, New York.
    ESA (2006), ENVISAT RA-2/MWR Level 2 User Manual.
    Ewert, H., Groh, A., & Dietrich, R. (2012). Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. Journal of Geodynamics, 59, 111-123.
    Fedor, L. S., & Brown, G. S. (1982). Waveheight and wind speed measurements from the Seasat radar altimeter. Journal of Geophysical Research: Oceans, 87(C5), 3254-3260.
    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of human genetics, 7(2), 179-188.
    Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., & Cazenave, A. (2006), Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin, Remote Sensing of Environment, 100(2), 252~264.
    Fricker, H. A., & Padman, L. (2012). Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research, 117, C02026.
    Fu, L. L., & Cazenave, A. (2001). Satellite Altimetry and Earth Sciences A Handbook of Techniques and Applications, San Diego: Academic Press.
    Guo, J., Chang, X., Gao, Y., Sun, J., & Hwang, C. (2009). Lake level variations monitored with satellite altimetry waveform retracking. IEEE journal of selected topics in applied earth observations and remote sensing, 2(2), 80-86.
    Halimi, A., Mailhes, C., Tourneret, J. Y., Thibaut, P., & Boy, F. (2013), Parameter estimation for peaky altimetric waveforms, IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1568-1577.
    Hayne, G. (1980). Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Transactions on Antennas and Propagation, 28(5), 687-692.
    Helm, V., Humbert, A., & Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 1539-1559.
    Hwang, C., & Parsons, B. (1995). Gravity anomalies derived from Seasat, Geosat, ERS‐1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge. Geophysical Journal International, 122(2), 551-568.
    Hwang, C., Kao, E. C., & Parsons, B. (1998). Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophysical Journal International, 134(2), 449-459.
    Janssens, D., Wets, G., Brijs, T., Vanhoof, K., Arentze, T., & Timmermans, H. (2006). Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. European Journal of operational research, 175(1), 16-34.
    Johansson, J. M., Davis, J. L., Scherneck, H. G., Milne, G. A., Vermeer, M., Mitrovica, J. X., ... & Koivula, H. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research: Space Physics, 107(8).
    Kuo, C. Y., Shum, C. K., Guo, J. Y., Yi, Y., Braun, A., Fukumori, I., ... & Shibuya, K. (2008). Southern Ocean mass variation studies using GRACE and satellite altimetry. Earth, planets and space, 60(5), 477-485.
    Lee, H.K. (2008a). Radar Altimetry Methods for Solid Earth Geodynamics Studies (Doctoral dissertation). Retrieved from https://www.ohiolink.edu/.
    Lee, H., Shum, C. K., Yi, Y., Braun, A., & Kuo, C. Y. (2008b). Laurentia crustal motion observed using TOPEX/POSEIDON radar altimetry over land. Journal of Geodynamics, 46(3), 182-193
    Lee, H., Shum, C. K., Yi, Y., Ibaraki, M., Kim, J. W., Braun, A., ... & Lu, Z. (2009). Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry. Marine Geodesy, 32(3), 284-302.
    Lee, H., Shum, C. K., Tseng, K. H., Huang, Z., & Sohn, H. G. (2013). Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. Remote sensing of environment, 132, 40-48.
    Liao, S. W., Chang, W. L., & Lin, S. W. (2008). Status and habitat preferences for endemic inhabitants of fiddler crab Uca formosensis in Hsiang-Shan wetland, Taiwan. Environmental monitoring and assessment, 143(1), 203-214.
    Maheu, C., Cazenave, A., & Mechoso, C. R. (2003). Water level fluctuations in the Plata basin (South America) from Topex/Poseidon satellite altimetry. Geophysical research letters, 30(3), 43-1.
    Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56(5), 567-581.
    Merrifield, M. A., Merrifield, S. T., & Mitchum, G. T. (2009). An anomalous recent acceleration of global sea level rise. Journal of Climate, 22(21), 5772-5781.
    Nerem, R. S., Chambers, D. P., Choe, C., & Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(S1), 435-446.
    Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4).
    Schwartz, M. L. (2005). Encyclopedia of Coastal Science, Dordrecht. The Netherlands: Springer, 1-1086.
    Schwiderski, E. W. (1980). On charting global ocean tides. Reviews of Geophysics, 18(1), 243-268.
    Smith, W. H., & Sandwell, D. T. (1994). Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. Journal of Geophysical Research: Solid Earth, 99(B11), 21803-2182
    Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
    Taiwan’s Wetland. Available online: http://wetland-tw.tcd.gov.tw/WetLandWeb /web-en/wetland-n0017.html
    Tseng, K. H., Shum, C. K., Yi, Y., Emery, W. J., Kuo, C. Y., Lee, H., & Wang, H. (2014). The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 991-1001.
    Tourneret, J. Y., Mailhes, C., Amarouche, L., & Steunou, N. (2008), Classification of altimetric signals using linear discriminant analysis. In Geoscience and Remote Sensing Symposium, IEEE IGARSS, 3, 75-78.
    Tourneret, J. Y., Mailhes, C., Severini, J., & Thibaut, P. (2010), Shape classification of altimetric signals using anomaly detection and bayes decision rule, IEEE IGARSS, 1222-1225.
    Vignudelli, S., Kostianoy, A. G., Cipollini, P., & Benveniste, J. (2011), Coastal altimetry (1st ed), Berlin: Springer.
    Wingham, D. J., Rapley, C. G., & Griffiths, H. (1986). New techniques in satellite altimeter tracking systems. Proceedings of IGARSS, 86, 1339-1344.
    Yang, L., Lin, M., Liu, Q., & Pan, D. (2012). A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. International journal of remote sensing, 33(24), 7806-7819.
    Yi, Y., Kouraev, A. V., Shum, C. K., Vuglinsky, V. S., Crétaux, J. F., & Calmant, S. (2013). The Performance of Altimeter Waveform Retrackers at Lake Baikal. Terrestrial, Atmospheric & Oceanic Sciences, 24(4), 513-519.

    下載圖示 校內:2020-07-25公開
    校外:2020-07-25公開
    QR CODE