簡易檢索 / 詳目顯示

研究生: 廖茂安
Liao, Mao-An
論文名稱: 不同電洞傳輸層之鈣鈦礦發光二極體研究
Different Hole Transport Layers for Perovskite Light-Emitting Diodes
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 100
中文關鍵詞: 電洞傳輸層化學氣相沉積法結晶鈣鈦礦發光二極體混合陽離子前驅溶液
外文關鍵詞: hole transport layer, chemical vapor deposition, crystallization, perovskite light-emitting diodes, mixed cation precursor solution
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要III 致謝VIII 目錄IX 圖目錄XIII 表目錄XIX 第一章緒論1 1-1前言1 1-2研究動機8 1-3論文大綱9 第二章鈣鈦礦發光二極體之製程與技術10 2-1鈣鈦礦發光二極體發展10 2-2鈣鈦礦發光二極體結構及原理14 2-2-1載子注入(Carrier Injection)16 2-2-2載子傳輸的現象16 2-3鈣鈦礦發光二極體之相關製程方式17 2-3-1旋轉塗佈法(Spin-Coating Method)17 2-3-2化學氣相沉積法(Chemical Vapor Deposition,CVD)19 2-3-3物理氣相沉積法(Physical Vapor Deposition,PVD)21 2-3-4氣相輔助溶液法(Vapor Assisted Solution Process)22 2-4混合鈣鈦礦發光薄膜分析文獻回顧24 第三章介紹材料和鈣鈦礦發光二極體的製備27 3-1前言27 3-2鈣鈦礦發光二極體材料介紹28 3-2-1氧化鎳(Nickel Oxide, NiOx)/ 高分子聚乙烯咔(Poly(9-vinylacrbazo),PVK)28 3-2-2調配前驅溶液(PbCl2 / FAPbCl3)再利用氯化甲胺(MACl)與氯化鉛(PbCl2)反應長晶形成之鈣鈦礦(MAPbCl3)&氯化甲胺與氯化甲脒與氯化鉛反應長晶形成之混合鈣鈦礦(FAxMA1-xPbCl3)31 3-3實驗藥品規格31 3-4製備PeLED流程33 3-4-1ITO玻璃基板的製備33 3-4-2製備電洞傳輸層(NiOx薄膜/PVK薄膜)流程34 3-4-3製備鈣鈦礦主動層流程36 3-4-4製備電子傳輸層流程38 3-4-5製備陰極流程38 3-5薄膜分析之設備及軟體39 3-5-1螢光光譜儀(Luminescence Spectrometer)39 3-5-2紫外光-可見光吸收光譜儀(U4100 UV-Visible NIR-Spectrophotometer)39 3-5-3掃描式電子顯微鏡(Scanning Electron Microscope)39 3-5-4ImageJ公共影像處理軟體39 3-5-5X光繞射儀(X Ray Diffractometer)40 3-5-6亮度-電流-電壓量測系統(L-I-V)40 第四章實驗結果與討論41 4-1前言41 4-2NiOx電洞傳輸層上旋塗0.9M PbCl2前驅薄膜利用化學氣相沉積法來成長鈣鈦礦薄膜及應用於發光二極體42 4-2-1氯化鉛(PbCl2)使用不同加熱溫度之薄膜分析42 4-3以NiOx作為電洞傳輸層旋塗0.9M PbCl2前驅溶液利用化學氣相沉積法來使鈣鈦礦薄膜成長之結晶性以及應用於發光二極體42 4-3-10.9M PbCl2前驅薄膜在以製程溫度50度使鈣鈦礦薄膜成長42 4-3-20.9M PbCl2前驅溶液以CVD製程溫度50度來成長單一鈣鈦礦並應用於發光二極體元件50 4-3-3以PVK作為電洞傳輸層旋塗0.9M PbCl2前驅溶液利用化學氣相沉積法來使鈣鈦礦薄膜成長之結晶性以及應用於發光二極體52 4-3-4本節結論57 4-4以NiOx作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl) 之混和前驅溶液以化學氣相沉積法來使混合鈣鈦礦薄膜成長之結晶性以及應用於發光二極體58 4-4-1以NiOx作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl)之混和前驅薄膜。58 4-4-2以NiOx作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl)之混和前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長60 4-4-30.9M PbCl2添加0.2M氯化甲眯(FACl)前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長之XRD圖65 4-4-4以NiOx作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl)之混和前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長並應用於發光二極體。66 4-5以PVK作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl) 之前驅溶液以化學氣相沉積法來使混合鈣鈦礦薄膜成長之結晶性以及應用於發光二極體68 4-5-1以PVK作為電洞傳輸層旋塗0.9M PbCl2添加0.2M氯化甲眯(FACl) 之前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長。68 4-5-2PVK作為電洞傳輸層旋塗0.9M PbCl2添加氯化甲眯(FACl) 之前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長並應用於發光二極體。73 4-5-3使用雙層NiOx以及PVK作為電洞傳輸層旋塗0.9M PbCl2添加氯化甲眯(FACl) 之前驅溶液以CVD製程溫度50度來使混合鈣鈦礦薄膜成長並應用於發光二極體。75 4-5-4本節結論77 第五章總結與未來展望77 5-1總結77 5-2未來展望79 參考文獻79

    [1]C.-H. Chen et al., "Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations," Organic Electronics, vol. 75, p. 105400, 2019.
    [2]Y. Zou, Z. Yuan, S. Bai, F. Gao, and B. Sun, "Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability," Materials Today Nano, vol. 5, p. 100028, 2019.
    [3]Q. Chen et al., "Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications," Nano Today, vol. 10, no. 3, pp. 355-396, 2015.
    [4]S. Kar, N. F. Jamaludin, N. Yantara, S. G. Mhaisalkar, and W. L. Leong, "Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes," Nanophotonics, vol. 10, no. 8, pp. 2103-2143, 2021.
    [5]D. Wang, C. Cheng, T. Tsuboi, and Q. Zhang, "Degradation mechanisms in blue organic light-emitting diodes," CCS chemistry, vol. 2, no. 4, pp. 1278-1296, 2020.
    [6]J. Y. Hu et al., "Bisanthracene‐based donor–acceptor‐type light‐emitting dopants: highly efficient deep‐blue emission in organic light‐emitting devices," Advanced Functional Materials, vol. 24, no. 14, pp. 2064-2071, 2014.
    [7]T. Fang, F. Zhang, S. Yuan, H. Zeng, and J. Song, "Recent advances and prospects toward blue perovskite materials and light‐emitting diodes," InfoMat, vol. 1, no. 2, pp. 211-233, 2019.
    [8]J.-W. Lee et al., "Opto-electronic properties of TiO 2 nanohelices with embedded HC (NH 2) 2 PbI 3 perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 9179-9186, 2015.
    [9]Z. Liu et al., "p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells," Dalton Transactions, vol. 44, no. 9, pp. 3967-3973, 2015.
    [10]S. Yuan, B. Han, T. Fang, Q. Shan, and J. Song, "Flat, luminescent, and defect-less perovskite films on PVK for light-emitting diodes with enhanced efficiency and stability," ACS Applied Electronic Materials, vol. 2, no. 11, pp. 3530-3537, 2020.
    [11]S. Luo and W. A. Daoud, "Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015.
    [12]Q. Ou et al., "Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications," Nano Materials Science, vol. 1, no. 4, pp. 268-287, 2019.
    [13]F. Zhang, J. Song, B. Han, T. Fang, J. Li, and H. Zeng, "High‐Efficiency Pure‐Color Inorganic Halide Perovskite Emitters for Ultrahigh‐Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices," Small Methods, vol. 2, no. 10, p. 1700382, 2018.
    [14]I. Levchuk et al., "Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X= Cl, Br, I) colloidal nanocrystals," Nano letters, vol. 17, no. 5, pp. 2765-2770, 2017.
    [15]B. R. Sutherland and E. H. Sargent, "Perovskite photonic sources," Nature Photonics, vol. 10, no. 5, pp. 295-302, 2016.
    [16]施敏 and 伍國, 半導體元件物理與製作技術. 2013.
    [17]Y. Yu, J. Xia, and Y. Liang, "Basic understanding of perovskite solar cells and passivation mechanism," AIP Advances, vol. 12, no. 5, 2022.
    [18]A. D. Taylor et al., "A general approach to high-efficiency perovskite solar cells by any antisolvent," Nature communications, vol. 12, no. 1, p. 1878, 2021.
    [19]P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, "Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions," ACS applied materials & interfaces, vol. 7, no. 4, pp. 2708-2714, 2015.
    [20]P. D. Hoat et al., "Synthesis of Cs2SnI6 perovskite thin film by low-pressure chemical vapor deposition method," Thin Solid Films, vol. 732, p. 138799, 2021.
    [21]X. Zhu et al., "Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation," Nanoscale, vol. 9, no. 34, pp. 12316-12323, 2017.
    [22]P. Luo, S. Zhou, W. Xia, J. Cheng, C. Xu, and Y. Lu, "Chemical vapor deposition of perovskites for photovoltaic application," Advanced Materials Interfaces, vol. 4, no. 8, p. 1600970, 2017.
    [23]F. Hao, C. C. Stoumpos, Z. Liu, R. P. Chang, and M. G. Kanatzidis, "Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%," Journal of the American Chemical Society, vol. 136, no. 46, pp. 16411-16419, 2014.
    [24]G. Tong et al., "Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process," RSC advances, vol. 7, no. 30, pp. 18224-18230, 2017.
    [25]B. Slimi, M. Mollar, B. Marí, and R. Chtourou, "Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA1− xMAxPbBr) Obtained by One-Step Method," Journal of Electronic Materials, vol. 48, no. 12, pp. 8014-8023, 2019.
    [26]K.-C. Wang et al., "P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells," Scientific reports, vol. 4, no. 1, p. 4756, 2014.
    [27]J. Halls et al., "Efficient photodiodes from interpenetrating polymer networks," Nature, vol. 376, no. 6540, pp. 498-500, 1995.
    [28]J.-Y. Jeng et al., "Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells," Advanced Materials (Deerfield Beach, Fla.), vol. 26, no. 24, pp. 4107-4113, 2014.
    [29]Y. Liu, T. Wu, Y. Liu, T. Song, and B. Sun, "Suppression of non-radiative recombination toward high efficiency perovskite light-emitting diodes," APL Materials, vol. 7, no. 2, 2019.

    無法下載圖示 校內:2029-03-31公開
    校外:2029-03-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE