| 研究生: |
徐安信 Hsu, An-Hsin |
|---|---|
| 論文名稱: |
利用刮刀塗佈法製備具氧化還原物膠態電解質應用於超級電容之研究 Study of supercapacitor fabricated with redox-mediated gel polymer electrolyte using knife coating method |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 電雙層電容器 、擬電容器 、電化學電容器 、奈米碳管 、磷酸 、聚乙烯醇 、2-巰基吡啶 |
| 外文關鍵詞: | Electric double layer capacitors, pseudocapacitors, carbon nanotubes, phosphoric acid, polyvinyl alcohol, 2-mercaptopyridine |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一章
[1] Poonam, K. Sharma, A. Arora, and S. K. Tripathi, “Review of supercapacitors: Materials and devices,” J. Energy Storage, vol. 21, pp. 801−825, 2019.
[2] R. Dubey, and V. Guruviah, “Review of carbon-based electrode materials for supercapacitor energy storage,” Ionics, vol. 25, pp. 1419−1445, 2019.
[3] Y. Wu, and C. Cao, “The way to improve the energy density of supercapacitors: Progress and perspective,” Sci. China-Mater., vol. 61, pp. 1517−1526, 2018.
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: A review,” Energy Environ. Sci., vol. 4, pp. 3243−3262, 2011.
[5] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, “Hybrid nanostructured materials for high-performance electrochemical capacitors,” Nano Energy, vol. 2, pp. 213−234, 2013.
[6] X. Zhang, H. Zhang, Z. Lin, M. Yu, X. Lu, and Y. Tong, “Recent advances and challenges of stretchable supercapacitors based on carbon materials,” Sci. China-Mater., vol. 59, pp. 475−494, 2016.
[7] S. Wu, and Y. Zhu, “Highly densified carbon electrode materials towards practical supercapacitor devices,” Sci. China-Mater., vol. 60, pp. 25−38, 2017.
[8] K. Li, and J. Zhang, “Recent advances in flexible supercapacitors based on carbon nanotubes and graphene,” Sci. China-Mater., vol. 61, pp. 210−232, 2018.
[9] P. Simon, and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater., vol. 7, pp. 845−854, 2008.
[10] Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang, “Recent progress in carbon-based materials for supercapacitor electrodes: A review,” J. Mater. Sci., vol. 56, pp. 173−200, 2020.
[11] B. K. Kim, S. Sy, A. Yu, and J. Zhang, “Handbook of clean energy systems,” John Wiley & Sons, Ltd., 2015.
[12] S. Kumar, G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, and J. H. Lee, “0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review,” Chem. Eng. J., vol. 403, pp. 126352-1−126352-18, 2021.
[13] P. Forouzandeh, V. Kumaravel, and S. C. Pillai, “Electrode materials for supercapacitors: A review of recent advances,” Catalysts, vol. 10, pp. 969-1−969-72, 2020.
第二章
[1] A. J. Bard, and L. R. Faulkner, “Electrochemical methods fundamentals and applications,” John wiley & sons. Inc., 2001.
[2] R. G. Compton, E. Laborda, and K. R. Ward, “Understanding voltammetry: Simulation of electrode processes,” Imperial college press, 2014.
[3] Z. Ahmad, “Principles of corrosion engineering and corrosion control,” Elsevier Ltd., 2006.
[4] Z. Cao, and B. Q. Wei, “A perspective: Carbon nanotube macro-films for energy storage,” Energy Environ. Sci., vol. 6, pp. 3183−3201, 2013.
[5] D. Nandi, V. B. Mohan, A. K. Bhowmick, and D. Bhattacharyya, “Metal/metal oxide decorated graphene synthesis and application as supercapacitor: A review,” J. Mater. Sci., vol. 55, pp. 6375−6400, 2020.
[6] C. Costentin, and J. M. Saveant, “Energy storage: Pseudocapacitance in prospect,” Chem. Sci., vol. 10, pp. 5656−5666, 2019.
[7] X. Chen, R. Paul, and L. Dai, “Carbon-based supercapacitors for efficient energy storage,” Natl. Sci. Rev., vol. 4, pp. 453−489, 2017.
[8] Y. T. Kim, K. Tadai, and T. Mitani, “Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials,” J. Mater. Chem., vol. 15, pp. 4914−4921, 2005.
[9] C. Mevada, and M. Mukhopadhyay, “High mass loading tin oxide-ruthenium oxide-based nanocomposite electrode for supercapacitor application,” J. Energy Storage, vol. 31, pp. 101587-1−101587-14, 2020.
[10] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, “Asymmetric supercapacitor electrodes and devices,” Adv. Mater., vol. 29, pp. 1605336-1−1605336-30, 2017.
[11] Y. Wang, Y. Song, and Y. Xia, “Electrochemical capacitors: mechanism, materials, systems, characterization and applications,” Chem. Soc. Rev., vol. 45, pp. 5925−5950, 2016.
[12] Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. VMa, J. Li, H. Dong, Y. Ren, D. Zhao, and S. Xie, “Compact-designed supercapacitor using free-standing single-walled carbon nanotube films,” Energy Environ. Sci., vol. 4, pp. 1440−1446, 2011.
[13] J. P. Zheng, and T. R. Jow, “A new charge storage mechanism for electrochemical capacitors,” J. Electrochem. Soc., vol. 142, pp. L6−L8, 1995.
[14] W. Wei, X. Cui, W. Chena, and D. G. Ivey, “Manganese oxide-based materials as electrochemical supercapacitor electrodes,” Chem. Soc. Rev., vol. 40, pp. 1697−1721, 2011.
[15] P. Naskar, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas, and A. Banerjee, “Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers,” J. Mater. Chem. A, vol. 9,
pp. 1970−2017, 2021.
[16] C. Zhao, X. Jia, K. Shu, C. Yu, G. G. Wallace, and C. Wang, “Conducting polymer composites for unconventional solid-state supercapacitors,” J. Mater. Chem. A, vol. 8, pp. 4677−4699, 2020.
[17] P. G. Bruce, and C. A. Vincent, “Polymer electrolytes,” J. Chem. Soc.-Faraday Trans., vol. 89, pp. 3187−3203, 1993.
[18] N. A. Choudhury, S. Sampath, and A. K. Shukla, “Hydrogel-polymer electrolytes for electrochemical capacitors: An overview,” Energy Environ. Sci., vol. 2, pp. 55−67, 2009.
[19] K. R. Kamath, and K. Park, “Biodegradable hydrogels in drug delivery,” Adv. Drug Deliv. Rev., vol .11, pp. 59−84, 1993.
[20] S. R. Stauffer, and N. A. Peppast, “Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing,” Polymer, vol. 33, pp. 3932−3936, 1992.
[21] S. Pan, J. Deng, G. Guan, Y. Zhang, P. Chen, J. Ren, and H. Peng, “A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance,” J. Mater. Chem. A, vol. 3, pp. 6286−6290, 2015.
[22] Y. Xie, and J. Wang, “Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte,” J. Sol-Gel Sci. Technol., vol. 86, pp. 760−772, 2018.
第三章
[1] A. J. Bard, and L. R. Faulkner, “Electrochemical methods fundamentals and applications (2nd ed.),” John wiley & sons. Inc., 2001.
[2] A. A. Alamin, A. E. M. A. Elhamid, W. R. Anis, and A. M. Attiya, “Fabrication of symmetric supercapacitor based on relatively long lifetime polyaniline grown on reduced graphene oxide via Fe2+ oxidation sites,” Diam. Relat. Mat., vol. 96, pp.182−194, 2019.
[3] B. Jinisha, K. M. Anilkumar, M. Manoj, C. M. Ashraf, V. S. Pradeep, and S. Jayalekshmi, “Solid-state supercapacitor with impressive performance characteristics assembled using redox-mediated gel polymer electrolyte,” J. Solid State Electrochem., vol. 23, pp. 3343−3353, 2019.
[4] P. Kanninen, N. D. Luong, L. H. Sinh, I. V Anoshkin, A. Tsapenko, J. Seppälä, A. G Nasibulin, and T. Kallio, “Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films,” Nanotechnology, vol. 27, pp. 235403-1−235403-7, 2016.
[5] B. Y. Chang, and S. M. Park, “Electrochemical impedance spectroscopy,” Annu. Rev. Anal. Chem., vol 3, pp. 207−229, 2010.
[6] B. E. Conway, J. O’M. Bockris, and R. E. Whiye, “Modern aspects of electrochemistry,” Kluwer Academic Publisher, 2002.
第四章
[1] J. Rodríguez, E. Navarrete, E. A. Dalchiele, L. Sánchez, J. R. Ramos-Barrado, and F. Martín, “Polyvinylpyrrolidonee LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors,” J. Power Sources, vol. 237, pp. 270−276, 2013.
[2] B. A. Abdulkadir, J. O. Dennis, M. F. B. Abd. Shukur, M. M. E. Nasef, and F. Usman, “Preparation and characterization of gel polymer electrolyte based on PVA-K2CO3,” J. Power sources, vol. 59, pp. 1679−1697, 2020.
[3] R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, and H. E. Unalan, “Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes,” ACS Appl. Mater., vol. 6, pp. 15434−15439, 2014.
[4] Y. Xie, and J. Wang, “Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte,” J. Sol-Gel Sci. Technol., vol. 86, pp. 760−772, 2018.
[5] S. Pan, J. Deng, G. Guan, Y. Zhang, P. Chen, J. Ren, and H. Peng, “A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance,” J. Mater. Chem. A, vol. 3, pp. 6286−6290, 2015.
校內:2026-10-20公開