簡易檢索 / 詳目顯示

研究生: 徐安信
Hsu, An-Hsin
論文名稱: 利用刮刀塗佈法製備具氧化還原物膠態電解質應用於超級電容之研究
Study of supercapacitor fabricated with redox-mediated gel polymer electrolyte using knife coating method
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 電雙層電容器擬電容器電化學電容器奈米碳管磷酸聚乙烯醇2-巰基吡啶
外文關鍵詞: Electric double layer capacitors, pseudocapacitors, carbon nanotubes, phosphoric acid, polyvinyl alcohol, 2-mercaptopyridine
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract IV 誌謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 超級電容器之發展與現況 2 1.3 超級電容器之簡介 3 1.4 研究動機 4 參考文獻 6 第二章 理論說明與文獻回顧 8 2.1 電化學反應 8 2.1.1 電化學反應原理 8 2.1.2 電容器簡介 9 2.1.3 電雙層的結構與觀念 10 2.2 超級電容器之分類 11 2.2.1 電雙層電容器 11 2.2.2 擬電容器 12 2.2.3 混合型電容器 13 2.3 電極材料介紹 13 2.3.1 電雙層電容器之電極材料 13 2.3.2 擬電容器之電極材料 15 2.4 電解質材料介紹 16 2.4.1 液態電解質 16 2.4.2 固態電解質 17 2.4.3 膠態電解質 18 2.4.4 氧化還原物添加於膠態電解質之介紹 19 參考文獻 24 第三章 實驗方法與製程步驟 28 3.1 實驗藥品 28 3.2 實驗概述 29 3.3 二極式超級電容器製備方法 30 3.3.1 基板清潔 30 3.3.2 製作電極層 30 3.3.3 製作電解質層 31 3.3.4 超級電容器之組裝 32 3.4 二極式超級電容器檢測方法 32 3.4.1 循環伏安法 32 3.4.2 定電流充放電測試 34 3.4.3 電化學阻抗頻譜量測 36 參考文獻 45 第四章 實驗結果與討論 46 4.1 選取適當的超級電容器之電壓視窗 46 4.2 改變膠態電解質中之磷酸含量 46 4.2.1 電化學阻抗頻譜分析 47 4.2.2 循環伏安法分析 48 4.2.3 定電流充放電分析 49 4.3 改變膠態電解質中之聚乙烯醇含量 49 4.3.1 電化學阻抗頻譜分析 50 4.3.2 循環伏安法分析 50 4.3.3 定電流充放電分析 51 4.4 改變電極中之奈米碳管含量 52 4.4.1 循環伏安法分析 52 4.4.2 定電流充放電分析 53 4.5 具氧化還原物(2-巰基吡啶)之膠態電解質 54 4.5.1 電化學阻抗頻譜分析 54 4.5.2 循環伏安法分析 55 4.5.3 定電流充放電分析 57 4.5.4 能量密度與功率密度 58 參考文獻 76 第五章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 78

    第一章
    [1] Poonam, K. Sharma, A. Arora, and S. K. Tripathi, “Review of supercapacitors: Materials and devices,” J. Energy Storage, vol. 21, pp. 801−825, 2019.
    [2] R. Dubey, and V. Guruviah, “Review of carbon-based electrode materials for supercapacitor energy storage,” Ionics, vol. 25, pp. 1419−1445, 2019.
    [3] Y. Wu, and C. Cao, “The way to improve the energy density of supercapacitors: Progress and perspective,” Sci. China-Mater., vol. 61, pp. 1517−1526, 2018.
    [4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: A review,” Energy Environ. Sci., vol. 4, pp. 3243−3262, 2011.
    [5] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, “Hybrid nanostructured materials for high-performance electrochemical capacitors,” Nano Energy, vol. 2, pp. 213−234, 2013.
    [6] X. Zhang, H. Zhang, Z. Lin, M. Yu, X. Lu, and Y. Tong, “Recent advances and challenges of stretchable supercapacitors based on carbon materials,” Sci. China-Mater., vol. 59, pp. 475−494, 2016.
    [7] S. Wu, and Y. Zhu, “Highly densified carbon electrode materials towards practical supercapacitor devices,” Sci. China-Mater., vol. 60, pp. 25−38, 2017.
    [8] K. Li, and J. Zhang, “Recent advances in flexible supercapacitors based on carbon nanotubes and graphene,” Sci. China-Mater., vol. 61, pp. 210−232, 2018.
    [9] P. Simon, and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater., vol. 7, pp. 845−854, 2008.
    [10] Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang, “Recent progress in carbon-based materials for supercapacitor electrodes: A review,” J. Mater. Sci., vol. 56, pp. 173−200, 2020.
    [11] B. K. Kim, S. Sy, A. Yu, and J. Zhang, “Handbook of clean energy systems,” John Wiley & Sons, Ltd., 2015.
    [12] S. Kumar, G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, and J. H. Lee, “0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review,” Chem. Eng. J., vol. 403, pp. 126352-1−126352-18, 2021.
    [13] P. Forouzandeh, V. Kumaravel, and S. C. Pillai, “Electrode materials for supercapacitors: A review of recent advances,” Catalysts, vol. 10, pp. 969-1−969-72, 2020.
    第二章
    [1] A. J. Bard, and L. R. Faulkner, “Electrochemical methods fundamentals and applications,” John wiley & sons. Inc., 2001.
    [2] R. G. Compton, E. Laborda, and K. R. Ward, “Understanding voltammetry: Simulation of electrode processes,” Imperial college press, 2014.
    [3] Z. Ahmad, “Principles of corrosion engineering and corrosion control,” Elsevier Ltd., 2006.
    [4] Z. Cao, and B. Q. Wei, “A perspective: Carbon nanotube macro-films for energy storage,” Energy Environ. Sci., vol. 6, pp. 3183−3201, 2013.
    [5] D. Nandi, V. B. Mohan, A. K. Bhowmick, and D. Bhattacharyya, “Metal/metal oxide decorated graphene synthesis and application as supercapacitor: A review,” J. Mater. Sci., vol. 55, pp. 6375−6400, 2020.
    [6] C. Costentin, and J. M. Saveant, “Energy storage: Pseudocapacitance in prospect,” Chem. Sci., vol. 10, pp. 5656−5666, 2019.
    [7] X. Chen, R. Paul, and L. Dai, “Carbon-based supercapacitors for efficient energy storage,” Natl. Sci. Rev., vol. 4, pp. 453−489, 2017.
    [8] Y. T. Kim, K. Tadai, and T. Mitani, “Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials,” J. Mater. Chem., vol. 15, pp. 4914−4921, 2005.
    [9] C. Mevada, and M. Mukhopadhyay, “High mass loading tin oxide-ruthenium oxide-based nanocomposite electrode for supercapacitor application,” J. Energy Storage, vol. 31, pp. 101587-1−101587-14, 2020.
    [10] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, “Asymmetric supercapacitor electrodes and devices,” Adv. Mater., vol. 29, pp. 1605336-1−1605336-30, 2017.
    [11] Y. Wang, Y. Song, and Y. Xia, “Electrochemical capacitors: mechanism, materials, systems, characterization and applications,” Chem. Soc. Rev., vol. 45, pp. 5925−5950, 2016.
    [12] Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. VMa, J. Li, H. Dong, Y. Ren, D. Zhao, and S. Xie, “Compact-designed supercapacitor using free-standing single-walled carbon nanotube films,” Energy Environ. Sci., vol. 4, pp. 1440−1446, 2011.
    [13] J. P. Zheng, and T. R. Jow, “A new charge storage mechanism for electrochemical capacitors,” J. Electrochem. Soc., vol. 142, pp. L6−L8, 1995.
    [14] W. Wei, X. Cui, W. Chena, and D. G. Ivey, “Manganese oxide-based materials as electrochemical supercapacitor electrodes,” Chem. Soc. Rev., vol. 40, pp. 1697−1721, 2011.
    [15] P. Naskar, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas, and A. Banerjee, “Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers,” J. Mater. Chem. A, vol. 9,
    pp. 1970−2017, 2021.
    [16] C. Zhao, X. Jia, K. Shu, C. Yu, G. G. Wallace, and C. Wang, “Conducting polymer composites for unconventional solid-state supercapacitors,” J. Mater. Chem. A, vol. 8, pp. 4677−4699, 2020.
    [17] P. G. Bruce, and C. A. Vincent, “Polymer electrolytes,” J. Chem. Soc.-Faraday Trans., vol. 89, pp. 3187−3203, 1993.
    [18] N. A. Choudhury, S. Sampath, and A. K. Shukla, “Hydrogel-polymer electrolytes for electrochemical capacitors: An overview,” Energy Environ. Sci., vol. 2, pp. 55−67, 2009.
    [19] K. R. Kamath, and K. Park, “Biodegradable hydrogels in drug delivery,” Adv. Drug Deliv. Rev., vol .11, pp. 59−84, 1993.
    [20] S. R. Stauffer, and N. A. Peppast, “Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing,” Polymer, vol. 33, pp. 3932−3936, 1992.
    [21] S. Pan, J. Deng, G. Guan, Y. Zhang, P. Chen, J. Ren, and H. Peng, “A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance,” J. Mater. Chem. A, vol. 3, pp. 6286−6290, 2015.
    [22] Y. Xie, and J. Wang, “Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte,” J. Sol-Gel Sci. Technol., vol. 86, pp. 760−772, 2018.
    第三章
    [1] A. J. Bard, and L. R. Faulkner, “Electrochemical methods fundamentals and applications (2nd ed.),” John wiley & sons. Inc., 2001.
    [2] A. A. Alamin, A. E. M. A. Elhamid, W. R. Anis, and A. M. Attiya, “Fabrication of symmetric supercapacitor based on relatively long lifetime polyaniline grown on reduced graphene oxide via Fe2+ oxidation sites,” Diam. Relat. Mat., vol. 96, pp.182−194, 2019.
    [3] B. Jinisha, K. M. Anilkumar, M. Manoj, C. M. Ashraf, V. S. Pradeep, and S. Jayalekshmi, “Solid-state supercapacitor with impressive performance characteristics assembled using redox-mediated gel polymer electrolyte,” J. Solid State Electrochem., vol. 23, pp. 3343−3353, 2019.
    [4] P. Kanninen, N. D. Luong, L. H. Sinh, I. V Anoshkin, A. Tsapenko, J. Seppälä, A. G Nasibulin, and T. Kallio, “Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films,” Nanotechnology, vol. 27, pp. 235403-1−235403-7, 2016.
    [5] B. Y. Chang, and S. M. Park, “Electrochemical impedance spectroscopy,” Annu. Rev. Anal. Chem., vol 3, pp. 207−229, 2010.
    [6] B. E. Conway, J. O’M. Bockris, and R. E. Whiye, “Modern aspects of electrochemistry,” Kluwer Academic Publisher, 2002.
    第四章
    [1] J. Rodríguez, E. Navarrete, E. A. Dalchiele, L. Sánchez, J. R. Ramos-Barrado, and F. Martín, “Polyvinylpyrrolidonee LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors,” J. Power Sources, vol. 237, pp. 270−276, 2013.
    [2] B. A. Abdulkadir, J. O. Dennis, M. F. B. Abd. Shukur, M. M. E. Nasef, and F. Usman, “Preparation and characterization of gel polymer electrolyte based on PVA-K2CO3,” J. Power sources, vol. 59, pp. 1679−1697, 2020.
    [3] R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, and H. E. Unalan, “Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes,” ACS Appl. Mater., vol. 6, pp. 15434−15439, 2014.
    [4] Y. Xie, and J. Wang, “Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte,” J. Sol-Gel Sci. Technol., vol. 86, pp. 760−772, 2018.
    [5] S. Pan, J. Deng, G. Guan, Y. Zhang, P. Chen, J. Ren, and H. Peng, “A redox-active gel electrolyte for fiber-shaped supercapacitor with high area specific capacitance,” J. Mater. Chem. A, vol. 3, pp. 6286−6290, 2015.

    無法下載圖示 校內:2026-10-20公開
    校外:2026-10-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE