| 研究生: |
孔令翔 Kung, Ling-Shiang |
|---|---|
| 論文名稱: |
貼附有壓電片之Timoshenko樑具焦電效應之動態分析 Dynamics Analysis of Timoshenko Beam Surface-Mounted with Piezoelectric Material Including Pyroelectric Effects |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 壓電片 、簡支撐樑 、移動負載 、溫度效應 |
| 外文關鍵詞: | Piezoelectric material, simply-supported beam, moving load, Pyroelectric effect |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究一貼附有壓電片之Timoshenko簡支撐樑承受移動負載之振動分析,並且利用模態法來分析整體結構之動態響應。
在模態法方面,為了瞭解壓電樑結構之力學行為,則利用結構之應力場及應變場推導出動能及位能,再配合Hamilton’s principle求得結構之運動方程式,進而求得模態頻率以及模態函數,並討論在不同幾何參數的情況下對模態頻率的影響。
求得結構之模態頻率以及模態函數後,利用相異模態之正交性進而求得承受移動負載下結構之振動方程式,並將壓電材料串連至 電路,使用Rung-Kutta 數值方法同時解出結構與電路之響應。最後也探討結構之溫度差對於整體結構響應的變化,以及找出移動負載之臨界速度。
The purpose of this thesis is to explore the dynamic analysis of the Timoshenko simply-supported beam mounted below with a piezoelectric material including pyroelectric effects. The linear displacements, temperature, electrical potential, and pyroelectric effect are considered in the mathematical model. The governing equations and boundary conditions of the structure are derived via the Hamilton’s principle. The natural frequencies and the corresponding sets of mode shape functions are obtained by analytical method. Dynamic analysis is based on the method of modal analysis. The method of modal analysis is adopted to investigate the dynamic responses of the host beam and the electric charge accumulated on the surfaces of the piezoelectric material caused by a moving load. The effects of velocity of the moving load and the geometric parameters of the piezoelectric material on both histories of the displacement of the host beam and the electric charge accumulation on the piezoelectric surfaces are investigated. There is a critical velocity of the moving load to cause the absolute maximum displacement of the host beam. Furthermore, there is another critical velocity of the traveling load to induce the absolute maximum electric charge on the surfaces of the piezoelectric material. Moreover, the effect of temperature on histories of the displacement of the host beam and the electric charge accumulation on the piezoelectric surfaces also are investigated.
1. D.H. Robbins and J.N. Reddy, ‘‘Analysis of piezoelectrically actuated beams using a layer-wise displacement theory,’’ Computers & Structures, Vol. 47, pp. 265-279, 1991.
2. Marco Di Sciuva and Ugo Icardi, ‘‘Large deflection of adaptive multilayered Timoshenko beams,’’ Composite Structures, Vol. 31, pp. 49-60, 1995.
3. Xiong-Ying Ire and Zhao-Ying Zhou, ‘‘Determination of the mechanical properties of microstructures,’’ Sensors and Actuators A: Physical, Vol. 54, pp. 750-754, 1996.
4. H. S. Tzou and R. V. Howard, ‘‘A piezothermoelastic thin shell theory applied to active structures,’’ Journal of Vibration and Acoustics, Vol. 116, pp. 295-302, 1994.
5. H.S. Tzou and R. Ye, ‘‘Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices,’’ Mechanical Systems and Signal Processing, Vol. 10, pp. 459-469, 1996.
6. S. Ueda and Y. Tani, ‘‘Thermal stress intensity factors for two coplanar cracks in a piezoelectric strip,’’ Journal of Thermal Stresses, Vol. 31, pp. 403-415, 2008.
7. K Chandrashekhara and R Tenneti, ‘‘Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators,’’ Smart Materials and Structures, Vol. 4, pp. 281-290, 1995.
8. Stephen Brooks and Paul Heyliger, ‘‘Static behavior of piezoelectric laminates with distributed and patched actuators,’’ Journal of intelligent material systems and structures, Vol. 5, pp. 635-646, 1990.
9. S. Narayanan and V. Balamurugan, ‘‘Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,’’ Journal of Sound and Vibration, Vol. 262, pp. 529-562, 2003.
10. Jian Ping Jiang and Dong Xu Li, ‘‘A new finite element model for piezothermoelastic composite beam,’’ Journal of Sound and Vibration, Vol. 306, pp. 849-864, 2007.
11. J.-D. Yau, ‘‘Vibration of simply supported compound beams to moving loads,’’ Journal of Marine Science and Technology, Vol. 12, pp. 319-328, 2004.
12. H. S. Zibdeh and R. Rachwitz, ‘‘Moving loads on beams with general boundary conditions,’’ Journal of Sound and Vibration, Vol. 195, pp. 85-102, 1996
13. J. Hino and T. Yoshimura, ‘‘Vibration analysis of non-linear beams subjected to a moving load using the finite element method,’’ Journal of Sound and Vibration, Vol.100, pp. 477-491, 1985.
14. M. Olsson, ‘‘On the fundamental moving load problem,’’ Journal of Sound and Vibration, Vol. 145, pp. 299-307, 1991.
15. N. Liu and G.-L. Yang, ‘‘Vibration property analysis of axially moving cantilever beam considering the effect of moving mass,’’ Journal of Vibration and Shock, Vol. 3, pp. 102-105, 2012.
校內:2022-07-01公開