簡易檢索 / 詳目顯示

研究生: 孔令翔
Kung, Ling-Shiang
論文名稱: 貼附有壓電片之Timoshenko樑具焦電效應之動態分析
Dynamics Analysis of Timoshenko Beam Surface-Mounted with Piezoelectric Material Including Pyroelectric Effects
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 壓電片簡支撐樑移動負載溫度效應
外文關鍵詞: Piezoelectric material, simply-supported beam, moving load, Pyroelectric effect
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究一貼附有壓電片之Timoshenko簡支撐樑承受移動負載之振動分析,並且利用模態法來分析整體結構之動態響應。
    在模態法方面,為了瞭解壓電樑結構之力學行為,則利用結構之應力場及應變場推導出動能及位能,再配合Hamilton’s principle求得結構之運動方程式,進而求得模態頻率以及模態函數,並討論在不同幾何參數的情況下對模態頻率的影響。
    求得結構之模態頻率以及模態函數後,利用相異模態之正交性進而求得承受移動負載下結構之振動方程式,並將壓電材料串連至 電路,使用Rung-Kutta 數值方法同時解出結構與電路之響應。最後也探討結構之溫度差對於整體結構響應的變化,以及找出移動負載之臨界速度。

    The purpose of this thesis is to explore the dynamic analysis of the Timoshenko simply-supported beam mounted below with a piezoelectric material including pyroelectric effects. The linear displacements, temperature, electrical potential, and pyroelectric effect are considered in the mathematical model. The governing equations and boundary conditions of the structure are derived via the Hamilton’s principle. The natural frequencies and the corresponding sets of mode shape functions are obtained by analytical method. Dynamic analysis is based on the method of modal analysis. The method of modal analysis is adopted to investigate the dynamic responses of the host beam and the electric charge accumulated on the surfaces of the piezoelectric material caused by a moving load. The effects of velocity of the moving load and the geometric parameters of the piezoelectric material on both histories of the displacement of the host beam and the electric charge accumulation on the piezoelectric surfaces are investigated. There is a critical velocity of the moving load to cause the absolute maximum displacement of the host beam. Furthermore, there is another critical velocity of the traveling load to induce the absolute maximum electric charge on the surfaces of the piezoelectric material. Moreover, the effect of temperature on histories of the displacement of the host beam and the electric charge accumulation on the piezoelectric surfaces also are investigated.

    目錄 摘要 I Extended Abstract II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號說明 XVI 第一章 緒論 1 1-1研究動機及目的 1 1-2文獻探討 2 1-3論文架構 4 第二章 研究架構 5 2-1研究架構流程 5 2-2基本假設 6 第三章 研究方法及內容 7 3-1研究模型設定 7 3-1-1結構幾何 7 3-1-2位移函數 7 3-1-3壓電材料之本構方程式 9 3-1-4溫度分佈 11 3-2結構之運動方程式 12 3-2-1 壓電材料應力、應變、應變能與動能 12 3-2-2鋁樑應力、應變、應變能與動能 14 3-2-3運動方程式及邊界條件 16 3-3模態法分析 19 3-3-1結構自然頻率 19 3-3-2移動負載響應 22 3-3-3 Runge-Kutta解運動方程式 25 第四章 案例探討與數據分析 27 4-1材料設定 27 4-2自然頻率與模態 29 4-2-1結構自然頻率與模態圖 29 4-2-2改變結構幾何條件之自然頻率 30 4-3整體結構承受移動負載之響應分析 32 4-3-1模態數對於響應之比較 34 4-3-2移動負載之不同速度對於結構響應之比較 36 4-3-3移動負載速度效應對於結構最大位移之比較 38 4-3-4無外接電路時,移動負載之不同速度對於結構響應之比較 39 4-3-5壓電材料厚度效應對於移動負載響應之比較 41 4-3-6結構之上下表面不同溫差效應對於移動負載響應之比較 43 4-3-7移動負載之不同速度效應對於電荷收集的比較 45 4-3-8移動負載速度與電荷收集之關係 47 4-3-9無外接電路時,移動負載之不同速度對於電荷收集之比較 48 4-3-10壓電材料厚度效應對於電荷收集之比較 50 4-3-11結構之上下表面不同溫差效應對於電荷收集之影響 52 4-3-12移動負載之不同速度效應對於外接電容之電壓影響 54 4-3-13壓電材料厚度效應對於外接電容之電壓影響 56 4-3-14結構之上下表面不同溫差效應對於外接電容之電壓影響 58 4-3-15外加電容效應對於外接電容之電壓歷程之比較 60 第五章 結論與建議 62 5-1結論 62 5-2建議 64 第六章 參考文獻 65 附錄 67

    1. D.H. Robbins and J.N. Reddy, ‘‘Analysis of piezoelectrically actuated beams using a layer-wise displacement theory,’’ Computers & Structures, Vol. 47, pp. 265-279, 1991.
    2. Marco Di Sciuva and Ugo Icardi, ‘‘Large deflection of adaptive multilayered Timoshenko beams,’’ Composite Structures, Vol. 31, pp. 49-60, 1995.
    3. Xiong-Ying Ire and Zhao-Ying Zhou, ‘‘Determination of the mechanical properties of microstructures,’’ Sensors and Actuators A: Physical, Vol. 54, pp. 750-754, 1996.
    4. H. S. Tzou and R. V. Howard, ‘‘A piezothermoelastic thin shell theory applied to active structures,’’ Journal of Vibration and Acoustics, Vol. 116, pp. 295-302, 1994.
    5. H.S. Tzou and R. Ye, ‘‘Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices,’’ Mechanical Systems and Signal Processing, Vol. 10, pp. 459-469, 1996.
    6. S. Ueda and Y. Tani, ‘‘Thermal stress intensity factors for two coplanar cracks in a piezoelectric strip,’’ Journal of Thermal Stresses, Vol. 31, pp. 403-415, 2008.
    7. K Chandrashekhara and R Tenneti, ‘‘Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators,’’ Smart Materials and Structures, Vol. 4, pp. 281-290, 1995.
    8. Stephen Brooks and Paul Heyliger, ‘‘Static behavior of piezoelectric laminates with distributed and patched actuators,’’ Journal of intelligent material systems and structures, Vol. 5, pp. 635-646, 1990.
    9. S. Narayanan and V. Balamurugan, ‘‘Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,’’ Journal of Sound and Vibration, Vol. 262, pp. 529-562, 2003.
    10. Jian Ping Jiang and Dong Xu Li, ‘‘A new finite element model for piezothermoelastic composite beam,’’ Journal of Sound and Vibration, Vol. 306, pp. 849-864, 2007.
    11. J.-D. Yau, ‘‘Vibration of simply supported compound beams to moving loads,’’ Journal of Marine Science and Technology, Vol. 12, pp. 319-328, 2004.
    12. H. S. Zibdeh and R. Rachwitz, ‘‘Moving loads on beams with general boundary conditions,’’ Journal of Sound and Vibration, Vol. 195, pp. 85-102, 1996
    13. J. Hino and T. Yoshimura, ‘‘Vibration analysis of non-linear beams subjected to a moving load using the finite element method,’’ Journal of Sound and Vibration, Vol.100, pp. 477-491, 1985.
    14. M. Olsson, ‘‘On the fundamental moving load problem,’’ Journal of Sound and Vibration, Vol. 145, pp. 299-307, 1991.
    15. N. Liu and G.-L. Yang, ‘‘Vibration property analysis of axially moving cantilever beam considering the effect of moving mass,’’ Journal of Vibration and Shock, Vol. 3, pp. 102-105, 2012.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE