簡易檢索 / 詳目顯示

研究生: 薛欣達
Hsueh, Hsin-ta
論文名稱: 以光合微生物固定高溫高鹼度吸收液中碳源之研究
Bio-fixation of Carbon Source from Absorbed Solutions at High Temperature and Alkaline Conditions with Photosynthetic Microorganisms
指導教授: 朱信
Chu, Hsin
余世宗
Yu, Shih-tsung
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 122
中文關鍵詞: 擬球藻二氧化碳質量傳輸鹼液吸收藍綠菌生質能
外文關鍵詞: Algae, Biofuel, IR-spectroscopy, 16S rDNA, Cyanobacterium, Alkaline solution, Mass transfer, Carbon dioxide
相關次數: 點閱:94下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化問題日益嚴重,溫室氣體之減除已是當務之急。其中又以最大宗之二氧化碳工業排放為首要。光合作用可固定二氧化碳又可將其轉化為生質能,十分符合能源短缺之現今。而其中光合微生物之光合效率又較陸生植物為高。
    本研究首先針對二氧化碳直接曝氣培養光合微生物與模擬鹼液吸收二氧化碳之碳酸鈉添加液來培養,進行固碳效能之比較。採用之光合微生物為東港水產試驗所之Nannochloropsis oculta (NAO)及由台東金崙溫泉所篩選之hot spring cyanobacterium (HSC)。結果顯示模擬鹼液吸收二氧化碳之培養較好,且HSC有高於NAO之固碳效率。進一步由型態及分子生物鑑定後,發現HSC相近於Thermosynechococcus elongates BP-1。故命名為Thermosynechococcus sp. CL-1 (TCL-1)。
    由碳源濃度對TCL-1生長速率可推導出Monod方程式。最大生長速率 (μmax) 為 3.85 ± 0.07 d-1及親和力常數 (KS) 為 1.95 ± 0.28 mM (DIC,dissolve inorganic carbon)。與煙道氣吸收液溫度十分相當之培養液溫度之實驗結果可得耗碳速率(θ)為1.02 (介於溫度40至55C之間)。
    進一步,本研究採用填充塔進行實際鹼液吸收,吸收液再進行TCL-1之培養。結果發現TCL-1可耐鹼之條件下進行操作,整體除碳效能可提昇五倍之多。另外,在固定pH值(7至11)之操作下,TCL-1皆可維持1.5 d-1以上之生長速率。此系統以此耐鹼性光合微生物(TCL-1)進行二氧化碳之處理,應可有效提昇二氧化碳處理效率。
    本研究亦針對不同固碳條件下所生成之微生物體(biomass),進行其組成差異之探討。結果顯示,將TCL-1培養在中性時(pH=7),脂質及蛋白質之含量較其它酸鹼值培養下為高。至pH 10.5時,碳水化合物為最高。但至pH 為11時,則傾向於重金屬之吸收,相同情形亦發生於DIC濃度小於18.9 mM時。大於此一濃度,脂質之生成減少而轉成為碳水化合物。另外,在不同操作條件下,生成之biomass亦有不同之裂解特性。此一結果可由熱重分析儀及紅外線分析儀之分析得到。

    Carbon dioxide mass transfer is a key factor in cultivating photosynthetic microorganisms besides the light limitation of photosynthesis. Firstly, this study offers a comparison of CO2 assimilation with photosynthesis via combining with and without alkaline absorption. The two photosynthetic microorganisms adopted as the test samples were Nannochloropsis oculta (NAO) and hot spring cyanobacterium (HSC). HSC was isolated from an alkaline hot spring (pH 9.3, 62°C), Chin-Lun hot spring, in eastern Taiwan and grows well over pH 11.5 and 50°C. The growth of NAO and HSC was better when combined with alkaline absorption than without it. The integration of alkaline absorption and photosynthetic bio-fixation provides a higher performance for CO2 assimilation than photosynthetic bio-fixation alone. In addition, HSC on the growth and alkaline adaptation were better than NAO under suitable temperature and pH. After analysis of HSC phylogeny with 16S rDNA and its morphological characteristics, the species is found to be close to Thermosynechococcus elongates BP-1 in the bootstrap tree. This strain is named as Thermosynechococcus sp. CL-1 (TCL-1).
    In order to assess the available of TCL-1 on the caboxylation, a Monod equation of TCL-1 with varied DIC (dissolved inorganic carbon) concentrations was proposed. The maximum growth rate (μmax) was 3.85 ± 0.07 d-1; affinity constant (KS) was 1.95 ± 0.28 mM. We also proposed an equation of CO2 assimilation rate that ranged in temperature from 40 to 55C of temperatures. The assimilation constant (θ) was 1.02.
    We also performed the alkaline absorption of CO2 with a packed tower and then carboxylation with TCL-1 to do the preliminary test of integrated system of these two mechanisms, TCL-1. CO2 removal efficiencies in a packed tower increase about 5-fold in a suitable growth condition compared to that of without adding any sodium hydroxide. In addition, TCL-1 also exhibits high growth rates under the controlled pHs from 7 to 11. The integrated system is, therefore, more feasible to treat CO2 in the flue gases using the species with higher alkaline affinity such as TCL-1 in small volume bioreactors.
    Alkaline conditions enhance the water’s absorption capacity of CO2, but the DIC carboxylation mechanisms under different pHs and DIC concentrations may change the composition of the biomass. Hence a study on the effects of pH and DIC regarding the content variations of four elements (C, N, H, O), lipids (LI), proteins (PR), and carbohydrates (CA) was carried out. The concentrations of PR and LI were the highest under the cultivation of pH 7 and CA was at 10.5. According to the analysis of three compositions, the production pathway of LI might be shifted to CA from pH 7 to 10.5, and shifted to inorganic compound from pH 10.5 to 11. Regarding the effect of DIC at pH 9, the results revealed that the uptake pathway shift (such as metals uptake) might happen while DIC is less than 18.9 mM. From 18.9 to 47.2 mM of DIC, the production pathway of LI shifted to CA and the contents of CA increased quickly from 47.2 to 94.3 mM without a further decrease of LI. Regarding the pyrolysis experiments with a thermogravimetric analyzer coupled with FT-IR (TG-IR), the transformation of xylan, cellulose, and lignin contents was observed under various pHs and DIC concentrations.

    摘要 A ABSTRACT C 致謝 E CONTENT I LIST OF TABLES IV LIST OF FIGURES V NOMENCLATURE VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURES REVIEW 6 2.1 Greenhouse effect 6 2.2 Technologies on the mitigation of carbon dioxide 8 2.3 Photosynthetic mechanism on the mitigation of carbon dioxide 10 2.4 Identification of cyanobacteria 18 2.5 Biomass (Bio-energy) 25 CHAPTER 3 EXPERIMENTAL EQUIPMENT AND PROCEDURES 29 3.1 Experimental reagents and equipments 29 3.1.1 Cultivation media and other reagents 29 3.1.2 Gases and accessories in the packed tower 30 3.1.3 Experimental equipments 30 3.2 Photosynthetic microorganism candidates 34 3.2.1 Photosynthetic microorganism sources 35 3.2.2 The calibration between cell density and optical density 35 3.3 The identification of HSC 36 3.3.1 Morphological identification 36 3.3.1.1 Observation with SEM 37 3.3.1.2 Observation with TEM 37 3.3.2 Identification with 16S rDNA 39 3.3.2.1 PCR 39 3.3.2.3 Sequence and Blast search in NCBI 41 3.3.2.4 Phylogenic analysis 41 3.4 Cultivation of photosynthetic microorganisms 45 3.4.1 Cultivation of NAO 45 3.4.1.1 Cultivation of NAO with different simulated absorbed solutions 45 3.4.1.2 Cultivation of NAO with various CO2 concentrations bubbling 46 3.4.1.3 Cultivation of NAO under various pHs and Temperatures 47 3.4.2 Cultivation of HSC 48 3.4.2.1 Cultivation of HSC with various CO2 concentrations bubbling 49 3.4.2.2 Cultivation of HSC under various pHs, temperatures, and DIC concentrations 49 3.4.2.3 The absorption of CO2 in a packed tower with NaOH and ammonia solutions 49 3.4.2.4 Cultivation of HSC with absorbed NaOH and ammonia solutions from the packed tower 51 3.5 Assessment of reuse of biomass 52 3.5.1 FT-IR analysis of macro-compositions of biomass 52 3.5.2 Wet chemistry analysis of macro-compositions of biomass 53 3.5.3 Element analysis 56 3.5.4 Metal analysis 57 3.5.5 Pyrolysis experiments with TGA and TG-IR 57 CHAPTER 4 RESULTS AND DISCUSSION 58 4.1 The preliminary test of the photosynthetic microorganisms 58 4.2 The identification of HSC with 16S rDNA gene and morphology 60 4.3 CO2 assimilation with photosynthesis integrated with or without alkaline absorption 66 4.3.1 The cultivation of NAO and HSC with bubbling CO2 66 4.3.2 The cultivation of NAO and HSC under various temperatures 71 4.3.3 The cultivation of NAO and HSC under various pHs 73 4.3.4 The cultivation of HSC under various DIC concentrations 79 4.3.5 The compositions (C, H, N, O and S) of NAO and HSC under various conditions 82 4.4 The integration test between packed tower and photo-bioreactor 82 4.4.1 The test of HSC 82 4.4.2 Screening test for the simulated absorbed solutions for marine algae 85 4.4.3 Sterilization methods and element additives for marine algae 88 4.5 Assessment of reuse of biomass 91 4.5.1 Elements and IR-spectroscopic quantitative analysis of biomass cultivated under various conditions 91 4.5.2 Pyrolysis analysis of biomass by TG-IR 101 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 107 5.1 Conclusions 107 5.2 Suggestions 109 REFERENCES 111 APPENDIX 1 117

    Aguirre-Gόmez, R., Weeks, A. R., Boxalld, S. R. The identication of phytoplankton pigments from absorption spectra. Int. J. Remote Sens. 2001, 22(2 & 3), 315-338.
    Arnold, W. Path of electrons in photosynthesis. Proc. Natl. Acad. Sci. USA. 1976, 73(12), 4502-4505.
    Badger, M. R., Palmqvist, K., Yu, J. W. Measurement of CO2 and HCO3- fluxes in cyanobacteria and microalgae during steady-state photosynthesis. Physiol. Plant. 1994, 90, 529-536.
    Badger, M. R., Price, G. D. The Role of Carbonic Anhydrase in Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45, 369-392.
    Bonenfant, D., Mimeault, M., Hausler, R. Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Ind. Eng. Chem. Res. 2003, 42, 3179-3184.
    Borowitzka, M.A. Calcification in algae: Mechanisms and the role of metabolism. CRC Critical Rev. Plant Sci. 1987, 6, 1-45.
    Brown, M. R., Barrett, S. M., Volkman, J. K., Nearhos, S. P., Nell J. A., Allan, G. L. Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture 1996, 143, 341-360.
    Buchanan, B.B., Gruissem, W., Jones, R.L. Biochemistry and molecular biology of plants. Am. Soc. Plant Physio. 2000, 418.
    Calvin, M., Benson, A. A. The path of carbon in photosynthesis. Science 1948, 107, 476-480.
    Calvin, M. The path of carbon in photosynthesis. Nobel Lecture 1961, 618-644.
    Carvalho, A.P., Malcata, F.X. Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol. Prog. 2001, 17, 265-272.
    Castenholz, R. W. Culturing methods for cyanobacteria. Methods Enzymol. 1988, 167, 68-93.
    Chang, E.H., Yang, S.S. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bull. Acad. Sin. 2003, 44, 43-52.
    Charpenay, S., Serio, M. A., Bassilakis, R., Solomon, P. R. Influence of maturation on the pyrolysis products from coals and kergens. 1. experiment. Energy Fuels 1996, 10, 19-25.
    Danckwerts, P.V. Significance of liquid film coefficients in gas absorption. Ind. Eng. Chem. 1951, 43, 1460-1467.
    Diao, Y.F., Zheng, X.Y., He, B.S., Cheng, C.H., Xu, X.C. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers. Mgmt. 2004, 45, 2283-2296.
    Eckert, J.S., Foote, E.H., Rollison, L.R., Walter, L.F. Absorption process utilizing packed tower. Ind. Eng. Chem. 1967, 59, 41-47.
    Graham, L.E., Wilcox, L.W. Algae. Prentice-Hall, U.S.A, 2000.
    Greenbaum, J., Nirmalan, M. Acid–base balance: Stewart's physicochemical approach. Current Anaesthesia & Critical Care 2005, 16(3), 133-135.
    Halmann, M.M., Steinberg, M. Greenhouse gas carbon dioxide mitigation-scinece and technology. Lewis publishers, Washington, D.C., 2000.
    Hamasaki, A., Shioji, N., Ikuta, Y., Hukuda, Y., Makita, T., Hirayama, K., Matuzaki, H., Tukamoto, T., Sasaki, S. Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl. Biochem. Biotechnol. 1994, 45/46, 799-809.
    Higbie, R. The rate of absorption of a pure gas into a still liquid during short period of exposure. Trans. Am. Inst. Chem. Eng. 1977, 31, 7.
    Honda, D., Yokota, A., Sugiyama, J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequence of five marine Synechococcus strains. J. Mol. Evol. 1999, 48, 723-739.
    Hsueh, H. T., Chu, H., Chang, C. C. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ. Sci. Technol. 2007, in press.
    Hsueh, H. T., Chu, H., Yu, S. T. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 2007, 66(5), 878-886.
    Katoh, H., Itoh, S., Shen, J. R., Ikeuchi, M. Functional analysis of psbV and a novel c type cytochrome gene psbV2 of the Thermophilic Cyanobacterium Thermosynechococcus elongatus Strain BP-1. Plant Cell Physiol. 2001, 42 (6), 599-607.
    Kaya, Y. The role of CO2 removal and disposal. Energy Convers. Mgmt. 1995, 36, 375-380.
    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111-120.
    King, C.J. Turbulent liquid phase mass transfer at a free gas-liquid interface. Ind. Eng. Chem. Fund. 1966, 5(1), 1-8.
    Kiyosawa, K. Ca2+ and phosphate release from calcified Chara cell walls in concentrated KCl solution. J. Exp. Bot. 2001, 52, 223-229
    Klass D. L. Biomass for renewable energy, fuels and chemicals; Academic Press: San Diego, 1998.
    Komrek, J. The modern classification of cyanoprokaryotes (cyanobacteria); Oceanological and Hydrobiological studies vol XXXIV, supplement 3; Institute of Oceanography, University of Gdańsk , Poland, 2005.
    Lewis, W.K., Whitman, W.G. Principles of gas absorption. Ind. Eng. Chem. 1924, 16, 12.
    Lin, C.C., Liu, W.T., Tan, C.S. Removal of carbon dioxide by absorption in a rotating packed bed. Ind. Eng. Chem. Res. 2003, 42, 2381-2386.
    Matsumoto, H., Shioji, N., Hamasaki, A., Ikuta, Y., Fukuda, Y., Sato, M., Endo, N., Tsukamoto, T. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl. Biochem. Biotechnol. 1995, 51/52, 681-692.
    Naumann, D., Labischinski, H., Giesbrecht, P. The Characterization of Microorganisms by Fourier Transform Infrared Spectroscopy (FT/IR), in Modern Techniques for Rapid Microbiological Analysis, ed. W.H. Nelson, VCH, New York, 1991, 43-96.
    Negoro, M., Hamasaki, A., Ikuta, Y., Makita, T., Hirayama, K., Suzuki, S. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl. Biochem. Biotechnol. 1993, 39/40, 643-653.
    Negoro, M., Shioji, N., Miyamoto, K., Miura, Y. Growth of microalgae in high CO2 gas and effect of SOx and NOx. Appl. Biochem. Biotechnol. 1991, 28/29, 877-886.
    Price, G. D., Woodger, F. J., Badger, M. R., Howitt, S. M., Tucker, L. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 18228-18233.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 1979, 111, 1-61.
    Ritchie, R. J. Sodium transport and the origin of the membrane potential in the cyanbacterium Synchococcus R-2 (Anacystis Nidulans) PCC 7942. J. Plant Physiol. 1992, 139, 320-330.
    Rittmann, B. E., McCarty, P. L. Environmental Biotechnology: Principles and Applications. McGraw-Hill, 2001.
    Shiao, M. H., Hsueh, S. T., Chu, H. The convection of captured CO2 to bio-fuel by algal photosynthesis in acidic condition. First yearly report, National Science Council, Taiwan, 2006.
    Shiraiwa, Y., Goyal, A., Tolbert, N. E. Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell physiology 1993, 34(5), 649-657.
    Smith, A. L. Applied Infrared Spectroscopy: Fundamentals, Techniques and Analytical Problem-Solving; Wiley: New York, 1979.
    Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Pianl, C., Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., Allen, M.R.,. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 2005, 433, 403-406.
    Stehfest, K., Toepel, J., Wilhelm, C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 2005, 43, 717-726.
    Stevenson, H. J. R., Levine, S. Infrared spectra of pneumococcal polysaccharides. Science 1952, 116(3026), 705-706.
    Takano, H., Takeyama, H., Nakamura, N., Sode, K., Burgess, J. G., Manabe, E., Hirano, M., Matsunaga, T. CO2 removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers. Appl. Biochem. Biotechnol. 1992, 34/35, 449-457.
    Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., Karbue, I. Carbon dioxide fixation by a unicellular green Alga Oocystis sp. J. Biotechnol. 1992, 25, 261-267.
    Taton, A., Grubisic, S., Brambilla, E., Wit, R. D. Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 2003, 69, 5157-5169.
    Tseng, D. Y., Vir, R., Traina, S. J., Chalmers, J. J. A Fourier-Transform Infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substrate fermentation (composting) system. Biotechnol. Bioeng. 1996, 52, 661-671.
    Watson, R.T., the Core Writing Team. Climate change 2001: Synthesis report. IPCC, Cambridge University Press.
    Weart, S. R. Global Warming, Cold War, and the Evolution of Research Plans. Hist. Stud. Phys. Biol. Sci. 1997, 27(2), 319-356.
    Yang, H., Yan, R., Chin, T., Liang D. T., Chen, H., Zheng, C. Thermogravimetric analysis-fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 2004, 18, 1814-1821.
    Yeh, A.C., Bai, H. Comparison of ammonia and monoethanolamine solvent to reduce CO2 greenhouse gas emissions. Sci. Total Environ. 1999, 228, 121-133.
    Yeh, J.T., Pennline, H.W. Study of CO2 absorption and desorption in a packed column. Energ. Fuel 2001, 15, 274-278.
    Zhila, N. O., Kalacheva, G. S., Volova, T. G. Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Ktz IPPAS H-252. Russ. J. Plant Physiol. 2005, 52(3), 311-319.

    下載圖示 校內:立即公開
    校外:2007-03-29公開
    QR CODE