簡易檢索 / 詳目顯示

研究生: 陳鵬宇
Chen, Peng-Yu
論文名稱: 利用區塊結構比對之超解析演算法
A Super-Resolution Algorithm using Patch Structure Matching
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 53
中文關鍵詞: 超解析向量量化區塊結構
外文關鍵詞: super-resolution, vector quantization, patch structure
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像超解析技術的主要目的是利用低解析度的影像產生出高解析度的影像。在本論文中,一個以向量量化為基礎的超解析演算法被提出來做高解析度影像的產生。首先利用簡單的內插方法產生出一張初始模糊的高解析度影像,接著利用事先訓練好的編碼簿尋找比對產生出最合適的高頻資訊影像。最後將初始模糊影像與高頻資訊影像結合得到最終放大影像。為了準確的預測出高頻資訊,區塊結構比對的方法被提出來應用在編碼簿搜尋的階段。除此之外,LBG訓練演算法也被做修正來適應區塊結構比對的搜尋方法。實驗結果呈現了所提出的演算法具有比較良好的視覺品質。

    The main purpose of super resolution technology is to generate high-resolution (HR) images from low-resolution (LR) images. In this thesis, a vector quantization (VQ) based super resolution algorithm is proposed to produce HR images. Firstly, the initial blurred HR images are generated by a simple interpolation method. Furthermore, the high-frequency information images are obtained by searching the pre-trained codebook to find the best matching codevector. The final enlarged images are generated by combining the initial blurred images and the high-frequency information images. In order to predict the high-frequency information accurately, a patch structure matching method is proposed in the codebook searching phase. Besides, LBG training algorithm is also modified to adapt to the patch structure matching. Experimental results show that the proposed algorithm produces HR images with better visual quality.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . .ii Acknowledgements . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . .1 1.1 Overview of Super-Resolution . . . . . . . . . . . . .1 1.2 Organization of This Thesis . . . . . . . . . . . . . 4 2 Background and Related Works . . . . . . . . . . . . . .5 2.1 Vector Quantization . . . . . . . . . . . . . . . . . 5 2.1.1 Vector Quantization for Super-Resolution . . . . . 6 2.1.2 Classi ed Vector Quantization . . . . . . . . . . . 6 2.1.3 Interpolative Vector Quantization . . . . . . . . . 12 2.2 Super-Resolution Only with HR Codebook . . . . . . . .13 2.3 Image Interpolation Method . . . . . . . . . . . . . 16 2.3.1 Bicubic interpolation . . . . . . . . . . . . . . . 16 2.3.2 Lanczos interpolation . . . . . . . . . . . . . . . 17 3 The Proposed Algorithm . . . . . . . . . . . . . . . . 19 3.1 Super-Resolution Reconstruction . . . . . . . . . . . 19 3.1.1 Prediction of High-Frequency Information of the Texture Class . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Prediction of High-Frequency Information of the Strong Edge Class . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Codebook Design . . . . . . . . . . . . . . . . . . . 27 3.2.1 Codebook Training of Texture . . . . . . . . . . . .28 3.2.2 Codebook Training of Strong Edge . . . . . . . . . .30 4 Experimental Results . . . . . . . . . . . . . . . . . 32 5 Conclusions and Future Works . . . . . . . . . . . . . .49 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . 49 5.2 Future Works . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . .51

    [1] H. Chang, D.-Y. Yeung, and Y. Xiong, "Super-resolution through neighbor embedding," in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1, june-2 july
    2004, pp. I-275 - I-282 Vol.1.
    [2] G. Chantas, N. Galatsanos, and N. Woods, "Super-resolution based on fast registration and maximum a posteriori reconstruction," Image Processing, IEEE Trans-
    actions on, vol. 16, no. 7, pp. 1821 -1830, july 2007.
    [3] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, "Fast and robust multiframe super resolution," Image Processing, IEEE Transactions on, vol. 13, no. 10, pp.1327 -1344, oct. 2004.
    [4] W. Freeman and E. Pasztor, "Learning low-level vision," in Computer Vision,1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2,1999, pp. 1182 -1189 vol.2.
    [5] H.-M. Hang and B. Haskell, "Interpolative vector quantization of color images," Communications, IEEE Transactions on, vol. 36, no. 4, pp. 465 -470, apr 1988.
    [6] S.-H. Hong, R.-H. Park, S. Yang, and J.-Y. Kim, "Image interpolation using interpolative classi ed vector quantization," Image Vision Comput., vol. 26, no. 2,
    pp. 228-239, Feb. 2008.
    [7] H. Hou and H. Andrews, "Cubic splines for image interpolation and digital ltering," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 26, no. 6, pp. 508 - 517, dec 1978.
    [8] H. Ji and C. Fermuller, "Robust wavelet-based super-resolution reconstruction: Theory and algorithm," Pattern Analysis and Machine Intelligence, IEEE Trans-
    actions on, vol. 31, no. 4, pp. 649 -660, april 2009.
    [9] Y. Linde, A. Buzo, and R. Gray, "An algorithm for vector quantizer design," Communications, IEEE Transactions on, vol. 28, no. 1, pp. 84 - 95, jan 1980.
    [10] G. Mu, X. Gao, K. Zhang, X. Li, and D. Tao, "Single image super resolution with high resolution dictionary," in Image Processing (ICIP), 2011 18th IEEE International Conference on, sept. 2011, pp. 1141 -1144.
    [11] S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: a technical overview," Signal Processing Magazine, IEEE, vol. 20, no. 3, pp. 21 -
    36, may 2003.
    [12] B. Ramamurthi and A. Gersho, "Classi ed vector quantization of images," Communications, IEEE Transactions on, vol. 34, no. 11, pp. 1105 - 1115, nov 1986.
    [13] A. Tekalp, M. Ozkan, and M. Sezan, "High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration," in Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, vol. 3, mar 1992, pp. 169 -172 vol.3.
    [14] I. Tosic and P. Frossard, "Dictionary learning," Signal Processing Magazine, IEEE, vol. 28, no. 2, pp. 27 -38, march 2011.
    [15] R. Y. Tsai and T. S. Huang, "Multiframe image restoration and registration," 1984.
    [16] K. Turkowski, "Graphics gems," A. S. Glassner, Ed. San Diego, CA, USA: Academic Press Professional, Inc., 1990, ch. Filters for common resampling tasks, pp. 147-165.
    [17] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, "Image quality assessment: from error visibility to structural similarity," Image Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600-612, 2004.
    [18] Y. C. Wee and H. J. Shin, "A novel fast fractal super resolution technique," IEEE Trans. on Consum. Electron., vol. 56, no. 3, pp. 1537-1541, Aug. 2010.

    無法下載圖示 校內:2018-07-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE