研究生: |
張宜晴 Chang, Yi-Cing |
---|---|
論文名稱: |
溝通協調過程中雙人腦間同步活動:個人特質與社會互動行為傾向的關聯性 Inter-brain synchronization during communication in a coordinating task: relationship with personal traits and behavioral tendencies in social interaction |
指導教授: |
陳德祐
Chen, Der-Yow |
學位類別: |
碩士 Master |
系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 雙機同步功能性磁振造影 、腦間同步 、社會互動 、協調賽局 、心智理論 |
外文關鍵詞: | Hyperscanning fMRI, inter-brain correlation, coordination game, interpersonal interaction, social cognition |
相關次數: | 點閱:204 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
協調在人際互動中是很重要的一環,需要根據他人的行為做出對應的表現。雖然在特定互動行為上已有一些決策模型可以做出解釋,在特定單一決策歷程中腦部活化現象也已累積了不少研究結果。但是在這樣的行為與個人特質、腦部活化反應之間的相關研究結果仍尚有不足,尤其是互動中兩人腦部活化反應之間的關聯性。本研究包含兩個實驗,第一個實驗我們透過修改版兩階段雙人溝通協調任務與人際互動相關特質的量表測驗,用以探討協調行為與個人特質之間的關聯性。在此任務中每一回合玩家的獎勵分配會由雙方的選擇共同決定,雙方必須試圖協調讓其中一人獲得較高獎勵,否則兩人都無法得到獎勵。玩家在第一個宣告階段表達各自的意願,通過此溝通過程在接續的第二個決策階段做出最終選擇,以決定兩人的獎勵分配。有一半的回合是實際真人互動的情境,其他回合則和電腦進行此任務。基於第一個實驗的主要目的是探討協調任務的行為結果與個人之社會互動特質的關係,而第二個實驗則是以雙機同步磁振造影超掃瞄的技術來測量一起參與此協調任務的兩人的動態腦部活動,藉此探討在進行雙向溝通協調時兩人腦部反應之間的關聯。本研究發現真人之間進行協調互動時可以有不同的協調模式,而行為實驗的結果顯示這些協調行為與個人的合作傾向、表達意見與情緒感受的特質皆有顯著相關。除此之外,這些協調行為也與特定腦區的活化程度有所相關。此研究支持腦區活化程度針對不同互動對象會有顯著差異,與心智理論、認知控制、獎勵相關的腦部區域皆在與真人互動時表現出較高的活化反應。尤其是在實際真人互動時右腦頂顳葉交界處(right temporoparietal junction, rTPJ)和右腦顳上溝(superior temporal sulcus, rSTS)的活化程度都和各個配對的協調成功率呈顯著相關。雙人腦部活動的時間序列分析結果也顯示,rTPJ和其他相關腦區之間存在著雙人腦區活化同步的現象。總之,這篇研究揭示了人際協調行為相關的神經機制,證實雙人腦間同步活動的現象,也支持了個人特質、行為表現與神經機制之間的關聯。
Coordination is a critical process during interpersonal interaction, which requires people to make corresponding decisions based on the behavior of others. In this study, we conducted two experiments to investigate the coordinating behaviors and the corresponding brain activities using a novel Communicating Coordination task. In the first experiment, we investigated the association between coordination behaviors and personal traits by conducting the coordination task and the questionnaires related to interpersonal interactions. In the second experiment, we investigated the inter-brain correlation during coordination through the hyperscanning fMRI paradigm. In each trial of this task, the reward distribution of two players were determined by their joint decision. They had to coordinate their choices, so that both of they could get rewards. However, only one of them could get the higher reward, otherwise neither of them got any reward. At the previous stage of each trial, participants mutually expressed their intentions. At the subsequent stage, the should make their final choices to decide a joint decision determining the actual reward distribution. Participants would interact with the actual participant in half of trials, and interact with computers in the other trials. Our results revealed that the brain regions related to theory of mind, cognitive control, and reward process were highly activated when interacting with actual people in contrast to computer. In addition, the activities of the right temporoparietal junction (rTPJ) and the right superior temporal sulcus (rSTS) were significantly related to their rates of successfully coordination. Correlation analysis for the time series of two subjects’ brain activities suggested that there were inter-brain synchronizations between rTPJ and other related brain areas during interpersonal coordination. People performed a variety of behavior patterns in this coordination task, which were significantly correlated to personal traits such as cooperative tendencies and emotions, were also related to brain activities. Overall, this study revealed the neural mechanisms related to interpersonal coordination behaviors between the interacting dyad, and showed significant inter-brain synchronization. Our findings also supported the association among personal traits, behavioral performance, and neural mechanisms.
Abe, M. O., Koike, T., Okazaki, S., Sugawara, S. K., Takahashi, K., Watanabe, K., & Sadato, N. (2019). Neural correlates of online cooperation during joint force production. NeuroImage, 191, 150-161. doi:10.1016/j.neuroimage.2019.02.003
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268-277. doi:10.1038/nrn1884
Apps, Matthew A. J., Rushworth, Matthew F. S., & Chang, Steve W. C. (2016). The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron, 90(4), 692-707. doi:10.1016/j.neuron.2016.04.018
Back, M. D., Schmukle, S. C., & Egloff, B. (2009). Predicting actual behavior from the explicit and implicit self-concept of personality. J Pers Soc Psychol, 97(3), 533-548. doi:10.1037/a0016229
Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemizing quotient: an investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 358(1430), 361-374. doi:10.1098/rstb.2002.1206
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163-175. doi:10.1023/b:jadd.0000022607.19833.00
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5-17. doi:10.1023/a:1005653411471
Bland, A. R., Roiser, J. P., Mehta, M. A., Schei, T., Sahakian, B. J., Robbins, T. W., & Elliott, R. (2017). Cooperative Behavior in the Ultimatum Game and Prisoner’s Dilemma Depends on Players’ Contributions. Frontiers in psychology, 8(1017). doi:10.3389/fpsyg.2017.01017
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324. doi:10.1016/j.neuron.2008.04.017
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162-173. doi:10.1006/cbmr.1996.0014
Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59-70. doi:10.1038/nrn2555
Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430-2437. doi:10.1016/j.neuroimage.2011.09.003
de Melo, C. M., & Terada, K. (2020). The interplay of emotion expressions and strategy in promoting cooperation in the iterated Prisoner's Dilemma. Scientific reports, 10(1), 14959-14959. doi:10.1038/s41598-020-71919-6
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: an fMRI investigation. NeuroImage, 23(2), 744-751. doi:10.1016/j.neuroimage.2004.05.025
Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchronization during social interaction. PloS one, 5(8), e12166. doi:10.1371/journal.pone.0012166
Eimontaite, I., Schindler, I., De Marco, M., Duzzi, D., Venneri, A., & Goel, V. (2019). Left amygdala and putamen activation modulate emotion driven decisions in the iterated Prisoner's Dilemma Game. Frontiers in neuroscience, 13, 741-741. doi:10.3389/fnins.2019.00741
Fairhurst, M. T., Janata, P., & Keller, P. E. (2014). Leading the follower: An fMRI investigation of dynamic cooperativity and leader–follower strategies in synchronization with an adaptive virtual partner. NeuroImage, 84, 688-697. doi:10.1016/j.neuroimage.2013.09.027
Fukuda, H., Ma, N., Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., . . . Nakahara, H. (2019). Computing social value conversion in the human brain. Journal of Neuroscience, 39(26), 5153-5172. doi:10.1523/jneurosci.3117-18.2019
Güth, W., Schmittberger, R., & Schwarze, B. (1982). An experimental analysis of ultimatum bargaining. Journal of economic behavior & organization, 3(4), 367-388. doi:10.1016/0167-2681(82)90011-7
Gallagher, H. L., Happé, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11-21. doi:10.1016/S0028-3932(99)00053-6
Haruno, M., Kimura, M., & Frith, C. D. (2014). Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices. Journal of Cognitive Neuroscience, 26(8), 1861-1870. doi:10.1162/jocn_a_00589
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends in cognitive sciences, 16(2), 114-121. doi:10.1016/j.tics.2011.12.007
Hernandez, S. K., & Mauger, P. A. (1980). Assertiveness, aggressiveness and Eysenck's personality variables. Personality and Individual Differences, 1(2), 143-149. doi:10.1016/0191-8869(80)90032-X
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942-951. doi:10.1038/nrn2024
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one's own mirror neuron system. PLoS biology, 3(3), e79. doi:10.1371/journal.pbio.0030079
Kanske, P. (2018). The social mind: disentangling affective and cognitive routes to understanding others. Interdisciplinary Science Reviews, 43(2), 115-124. doi:10.1080/03080188.2018.1453243
Ke, Y., Lin, X., & Zhang, X. (Eds.). (2000). Interpersonal Behavior Survey Manual. Taipei: Psychological Assessment Corporation.
Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 55, 623-655. doi:10.1146/annurev.psych.55.090902.142009
Koike, T., Tanabe, H. C., Adachi-Abe, S., Okazaki, S., Nakagawa, E., Sasaki, A. T., . . . Sadato, N. (2020). Role of the right anterior insular cortex in joint attention-related identification with a partner. Social cognitive and affective neuroscience, 14(10), 1131-1145. doi:10.1093/scan/nsz087
Konvalinka, I., Vuust, P., Roepstorff, A., & Frith, C. D. (2010). Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q J Exp Psychol (Hove), 63(11), 2220-2230. doi:10.1080/17470218.2010.497843
Kätsyri, J., Hari, R., Ravaja, N., & Nummenmaa, L. (2013). The opponent matters: elevated fMRI reward responses to winning against a human versus a computer opponent during Interactive video game playing. Cerebral Cortex, 23(12), 2829-2839. doi:10.1093/cercor/bhs259
Kumari, V., ffytche, D. H., Williams, S. C. R., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24(47), 10636-10641. doi:10.1523/JNEUROSCI.3206-04.2004
Lambert, B., Declerck, C. H., Emonds, G., & Boone, C. (2017). Trust as commodity: social value orientation affects the neural substrates of learning to cooperate. Social cognitive and affective neuroscience, 12(4), 609-617. doi:10.1093/scan/nsw170
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 42-58. doi:10.1162/jocn.2007.19.1.42
Leslie, A. M. (1987). Pretense and representation: The origins of "theory of mind.". Psychological Review, 94(4), 412-426. doi:10.1037/0033-295X.94.4.412
Lindenberger, U., Li, S.-C., Gruber, W., & Müller, V. (2009). Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10(1), 22. doi:10.1186/1471-2202-10-22
Liu, T., Saito, H., & Oi, M. (2015). Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain and Cognition, 99, 17-23. doi:10.1016/j.bandc.2015.07.001
Mars, R. B., Sallet, J., Schüffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. S. (2011). Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cerebral Cortex, 22(8), 1894-1903. doi:10.1093/cercor/bhr268
Mason, M., Magee, J. C., & Fiske, S. T. (2014). Neural substrates of social status inference: roles of medial prefrontal cortex and superior temporal sulcus. Journal of Cognitive Neuroscience, 26(5), 1131-1140. doi:10.1162/jocn_a_00553
Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., . . . Fisher, R. E. (2002). Hyperscanning: Simultaneous fMRI during Linked Social Interactions. NeuroImage, 16(4), 1159-1164. doi:10.1006/nimg.2002.1150
Novembre, G., Zanon, M., & Silani, G. (2015). Empathy for social exclusion involves the sensory-discriminative component of pain: a within-subject fMRI study. Social cognitive and affective neuroscience, 10(2), 153-164. doi:10.1093/scan/nsu038
Obeso, I., Moisa, M., Ruff, C. C., & Dreher, J.-C. (2018). A causal role for right temporo-parietal junction in signaling moral conflict. eLife, 7, e40671. doi:10.7554/eLife.40671
Ogawa, A., & Kameda, T. (2019). Dissociable roles of left and right temporoparietal junction in strategic competitive interaction. Social cognitive and affective neuroscience, 14(10), 1037-1048. doi:10.1093/scan/nsz082
Otsuka, Y., Osaka, N., Ikeda, T., & Osaka, M. (2009). Individual differences in the theory of mind and superior temporal sulcus. Neuroscience Letters, 463(2), 150-153. doi:10.1016/j.neulet.2009.07.064
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4), 515-526. doi:10.1017/S0140525X00076512
RCoreTeam. (2014). R: A Language and Environment for Statistical Computing. Retrieved from http://www.R-project.org/
Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A neural basis for social cooperation. Neuron, 35(2), 395-405. doi:10.1016/S0896-6273(02)00755-9
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835-1842. doi:10.1016/S1053-8119(03)00230-1
Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror Neuron and Theory of Mind Mechanisms Involved in Face-to-Face Interactions: A Functional Magnetic Resonance Imaging Approach to Empathy. Journal of Cognitive Neuroscience, 19(8), 1354-1372. doi:10.1162/jocn.2007.19.8.1354
Shaw, D., Czekóová, K., Staněk, R., Mareček, R., Urbánek, T., Špalek, J., . . . Brázdil, M. (2018). A dual-fMRI investigation of the iterated Ultimatum Game reveals that reciprocal behaviour is associated with neural alignment. Scientific reports, 8(1), 10896-10896. doi:10.1038/s41598-018-29233-9
Silvera, D., Martinussen, M., & Dahl, T. I. (2001). The Tromsø Social Intelligence Scale, a self-report measure of social intelligence. Scandinavian Journal of Psychology, 42(4), 313-319. doi:10.1111/1467-9450.00242
Simmons, C. H., Wehner, E. A., Tucker, S. S., & King, C. S. (1988). The Cooperative/Competitive Strategy Scale: a measure of motivation to use cooperative or competitive strategies for success. Journal of Social Psychology, 128(2), 199-205. doi:10.1080/00224545.1988.9711363
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81-96. doi:10.1111/j.1749-6632.2009.04418.x
Van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain Mapping, 30(3), 829-858. doi:10.1002/hbm.20547
Van Overwalle, F., & Baetens, K. (2009). Understanding others' actions and goals by mirror and mentalizing systems: a meta-analysis. NeuroImage, 48(3), 564-584. doi:10.1016/j.neuroimage.2009.06.009
Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior: Princeton university press.
Walbrin, J., Downing, P., & Koldewyn, K. (2018). Neural responses to visually observed social interactions. Neuropsychologia, 112, 31-39. doi:10.1016/j.neuropsychologia.2018.02.023
Wang, Y., & Quadflieg, S. (2015). In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions. Social cognitive and affective neuroscience, 10(11), 1515-1524. doi:10.1093/scan/nsv043
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition, 13(1), 103-128. doi:10.1016/0010-0277(83)90004-5
Wittmann, M. K., Kolling, N., Faber, N. S., Scholl, J., Nelissen, N., & Rushworth, M. F. (2016). Self-other mergence in the frontal cortex during cooperation and competition. Neuron, 91(2), 482-493. doi:10.1016/j.neuron.2016.06.022