簡易檢索 / 詳目顯示

研究生: 楊子正
Yang, Tzu-Cheng
論文名稱: (Ni-ZnO)@C奈米反應器應用於光催化還原二氧化碳
Photocatalytic reduction of CO2 effected by (Ni-ZnO)@C nanoreactors
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 二氧化碳光催化奈米反應器碳化矽X射線吸收光譜
外文關鍵詞: Carbon dioxide, photocatalysis, nanoreactors, silicon carbide, X-ray absorption
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料之大幅利用,衍生過量CO2排放,造成溫室效應,最終可能造成生物滅絕,因此,CO2減量勢在必行,但若能光催化還原CO2及H2O轉化生成有價之C1-C2之化學品,則可達到碳循環之目的。因此,本研究重點是發展奈米反應器(nanoreactor),成為一種新產H2及還原CO2之技術。利用醣類螯合物與Ni2+、Zn2+形成錯合物,碳化生成可調粒徑(5~40 nm)之奈米(Ni-ZnO)@C核殼(core-shell)物質,再利用酸萃取析出部分金屬,生成(Ni-ZnO)○yC (yolk-shell)奈米反應器,應用於光催化分解H2O產H2、還原CO2之反應。實驗結果顯示ZnO為光催化分解H2O之活性基,Ni則有助於CO2還原生成HCOOH及CH3COOH。在奈米反應器之侷限空間內,可大幅提升反應物與Ni-ZnO活性基之碰撞頻率,增加反應速率。X射線繞射(XRD)與同步輻射之X射線吸收光譜(XAS)顯示奈米粒子中主要物種為Ni與ZnO,TEM指出(Ni-ZnO)○yC奈米反應器之粒徑大小為5~30 nm左右,與XRD、SAXS分析之結果相當符合。
    由於光伏產業的蓬勃發展,使得原物料之價格逐漸攀升。因此,本研究另外從矽晶圓製程所產生之廢棄矽泥中,回收碳化矽以做為光觸媒,達到回收再利用之目的,也進行光催化分解H2O及還原CO2之反應。由XRD、XAS光譜顯示,利用低成本之溶劑及離心方式可有效地將碳化矽分離純化,其吸光範圍屬於可見光範圍(>400 nm),能隙約3.0 eV,經由SEM與EDX之分析,碳化矽之大小約10~20 μm。但微米SiC之化學產率低於(Ni-ZnO)○yC,可能是奈米反應器能在侷限空間內,有效加原子碰撞速率,使得反應速率大幅提升。

    Burning of fossil fuels emits million metric tons of carbon dioxide (CO2) into the environment, which has caused the global warming. CO2 emissions, therefore, have become the most concerned issues worldwide. CO2 can be photocatalytically converted to C1-C2 chemicals. Novel photocatalysts (i.e., metallic nickel (Ni) and zinc oxide (ZnO) nanoparticles encasulated in carbon-shell (Ni-ZnO@C)) have been investigated in the present work. In the separated experiments, size-controllable metal and multi-metal core-shell nanoparticles have been prepared by carbonization of metal ions-β-cyclodextrin (CD) complexes. Metallic nickel (Ni) and zinc oxide (ZnO) encapsulated in carbon-shell with the size ranged from 5 to 30 nm as the Ni2+- and Zn2+-CD complexes was carbonized at the temperature of 673 K. The core metals were partially etched from (Ni-ZnO)@C with a H2SO4 solution. Experimentally, formic and acetic acids from the photocatalytic reduction of CO2 and H2O in the (Ni-ZnO)@C nanoreactors are formed. It seems that ZnO involves in photocatalytic splitting of H2O, and provides hydrogen for catalytic hydrogenation of CO2 on Ni to yield formic and acetic acids.
    In addition, photovoltaic (PV) energy has become one of the main green energy resources,The price of the raw PV materials is increased. Silicon carbide (SiC) can be recovered from silicon sludge wastes as photocstalysts for photocatalytic splitting of water and reducing CO2. By X-ray diffraction (XRD) and X-ray absorption (XAS), the main components in the silicon sludge wastes are silicon and SiC. The crystallite size of the SiC separated from the sludge waste is in the range of 10-20 µm in diameter by SEM. By solid state NMR, it is found that α-SiC is the main crystallite in the purified SiC. The α-SiC having the band-gap of 3.0 eV can absorb the visible light. However, SiC have lower chemical yield rates than (Ni-ZnO)@C nanoreactors suggesting that the collision frequency is highly enhanced in the confined space of nanoreactors.

    摘要 I ABSTRACT II 誌謝 IV CONTENT V FIGURES VII TABLES X CHAPTER 1 INTRODUCTION XI CHAPTER 2 LITERATURE STUDIES 1 2.1 Core-shell Nanoparticles 1 2.2 Yolk-shell Nanoreactors 2 2.3 Silicon Sludge Wastes 3 2.4 Solar Energy 5 2.5 Hydrogen (H2) Generation 6 2.5.1 Partial Oxidation 7 2.5.2 Steam Methane Reforming 8 2.5.3 Water Electrolysis 8 2.5.4 Photobiological 11 2.5.5 Photocatalytic Splitting of Water 11 2.6 CO2 Reduction 13 2.6.1 CO2 Capture and Storage 14 2.6.2 CO2 Conversion 19 2.7 Properties of Semiconductor 25 2.7.1 Photocatalyst 25 2.7.2 ZnO 34 2.7.3 SiC 35 CHAPTER 3 EXPERIMENTAL METHODS 37 3.1 Experimental Procedures 37 3.2 Preparation of Catalysts 39 CHAPTER 4 RESULTS AND DISCUSSION 48 4.1 Photocatalytic Splitting of Seawater Effected by (Ni-ZnO)○yC Nanoreactors 48 4.2 Photocatalytic Reduction of CO2 and H2O Effected by (Ni-ZnO)○yC Nanoreactors 62 4.3 Photocatalytic Splitting Seawater Effected by SiC Recoverd from the Silicon Sludge Waste 74 4.4 Photocatalytic Reduction of CO2 and H2O Effected by SiC Recovered from the Silicon Sludge Waste 89 CHAPTER 5 CONCLUSIONS 98 REFERENCES 100

    Aaron, D., Tsouris, C., 2005. Separation of CO2 from flue gas: A review. Separ Sci Technol 40, 321-348.
    Abe, R., Sayama, K., Arakawa, H., 2003. Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction. Chem Phys Lett 371, 360-364.
    Abe, R., Sayama, K., Sugihara, H., 2005. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 (-)/I-. J Phys Chem B 109, 16052-16061.
    Akikusa, J., Khan, S.U.M., 2002. Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. Int J Hydrogen Energ 27, 863-870.
    Alyea, E.C., He, D., Wang, J., 1993. Alcohol Synthesis from Syngas .1. Performance of Alkali-Promoted Ni-Mo (Movs) Catalysts. Appl Catal a-Gen 104, 77-85.
    Amao, Y., Tomonou, Y., Okura, I., 2003. Highly efficient photochemical hydrogen production system using zinc porphyrin and hydrogenase in CTAB micellar system. Solar Energy Materials and Solar Cells 79, 103-111.
    Amenomiya, Y., 1987. Methanol Synthesis from Co2+H2 .2. Copper-Based Binary and Ternary Catalysts. Appl Catal 30, 57-68.
    Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., Frusteri, F., 2007. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249, 185-194.
    Arjmand, M., Leion, H., Lyngfelt, A., Mattisson, T., 2012. Use of manganese ore in chemical-looping combustion (CLC)-Effect on steam gasification. Int J Greenh Gas Con 8, 56-60.
    Ashokkumar, M., 1998. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrogen Energ 23, 427-438.
    Balat, M., 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy 33, 4013-4029.
    Bandara, J., Tennakone, K., Jayatilaka, P.P.B., 2002. Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes. Chemosphere 49, 439-445.
    Banerjee, S., Campbell, A., 2005. Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique. J Adhes Sci Technol 19, 739-751.
    Barelli, L., Bidini, G., Gallorini, F., Servili, S., 2008. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy 33, 554-570.
    Beaucage, G., 1995. Approximations leading to a unified exponential power-law approach to small-angle scattering. J Appl Crystallogr 28, 717-728.
    Bockris, J.O., 1975. Energy: the solar - hydrogen alternative.
    Brown, M.A., Devito, S.C., 1993. Predicting Azo-Dye Toxicity. Crit Rev Env Sci Tec 23, 249-324.
    Burch, R., Petch, M.I., 1992. Investigation of the Synthesis of Oxygenates from Carbon-Monoxide Hydrogen Mixtures on Supported Rhodium Catalysts. Appl Catal a-Gen 88, 39-60.
    Chang, A.C.C., Chuang, S.S.C., Gray, M., Soong, Y., 2003. In-situ infrared study of CO2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane. Energ Fuel 17, 468-473.
    Cheekatamarla, P.K., Lane, A.M., 2005. Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: I. Activity tests and sulfur poisoning. Journal of Power Sources 152, 256-263.
    Chen, S.W., Sommers, J.M., 2001. Alkanethiolate-protected copper nanoparticles: Spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 105, 8816-8820.
    Cheng, H., Scott, K., Ramshaw, C., 2002. Intensification of water electrolysis in a centrifugal field. J Electrochem Soc 149, D172-D177.
    Chinchen, G.C., Denny, P.J., Jennings, J.R., Spencer, M.S., Waugh, K.C., 1988. Synthesis of Methanol .1. Catalysts and Kinetics. Appl Catal 36, 1-65.
    Ciupină, V., Zamfirescu, S., Prodan, G., 2007. Evaluation of Mean Diameter values using Scherrer Equation Applied to Electron Diffraction Images.
    Dong, A.P., Zhang, L.F., Damoah, L.N.W., 2011a. Beneficial and Technological Analysis for the Recycling of Solar Grade Silicon Wastes. Jom-Us 63, 23-27.
    Dong, A.P., Zhang, L.F., Lucas, N.W.D., 2011b. Beneficial and technological analysis for the recycling of solar grade silicon wastes. JOM-US 63, 23-26.
    Elbassuoni, A.M.A., Sheffield, J.W., Veziroglu, T.N., 1982. Hydrogen and Fresh-Water Production from Sea-Water. Int J Hydrogen Energ 7, 919-923.
    Feigin LA, S.D., 1987. Structure analysis by small-angle X-ray and neutron scattering. Plenum.
    Freni, S., Calogero, G., Cavallaro, S., 2000. Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources 87, 28-38.
    Fujishima, A., Honda, K., 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37-+.
    Fujita, S., Usui, M., Ito, H., Takezawa, N., 1995. Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO. J Catal 157, 403-413.
    Galinska, A., Walendziewski, J., 2005. Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energ Fuel 19, 1143-1147.
    Gong, J.L., Jiang, J.H., Liang, Y., Shen, G.L., Yu, R.Q., 2006. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. J Colloid Interf Sci 298, 752-756.
    Grahn, H.T., 1999. Introduction to semiconductor physics.
    Green, M.A., Emery, K., King, D.L., Hisikawa, Y., Warta, W., 2006. Solar cell efficiency tables (Version 27). Prog Photovoltaics 14, 45-51.
    Guinier A, F.G., 1955. Small-angle scattering of X-rays. New York: John Wiley &Sons.
    Guo, X.M., Liu, X.G., Xu, B.S., Dou, T., 2009. Synthesis and characterization of carbon sphere-silica core-shell structure and hollow silica spheres. Colloid Surface A 345, 141-146.
    Hawkins, D.G., 2004. No exit: thinking about leakage from geologic carbon storage sites. Energy 29, 1571-1578.
    Ho, M.T., Allinson, G.W., Wiley, D.E., 2008. Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47, 1562-1568.
    Holloway, S., 2001. Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth. Annu Rev Energ Env 26, 145-166.
    Hong, C.I., Kang, H.Y., Wang, H.P., Lin, W.K., Jeng, U.S., Su, C.H., 2011. Cu-ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy. J Electron Spectrosc 184, 301-303.
    Hou, Z.Y., Yokota, O., Tanaka, T., Yashima, T., 2003. Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst. Catal Lett 89, 121-127.
    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M., 2001. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B-Environ 31, 145-157.
    Hu, Y.H., Ruckenstein, E., 2004. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming Advances in Catalysis 48, 297-345.
    Huang, T.J., Chren, S.L., 1988. Kinetics of Partial Oxidation of Methanol over a Copper-Zinc Catalyst. Appl Catal 40, 43-52.
    Hwang, K.J., Lee, J.W., Shim, W.G., Jang, H.D., Lee, S.I., Yoo, S.J., 2012. Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol-gel method for methylene blue degradation. Adv Powder Technol 23, 414-418.
    Inoue, T., Fujishima, A., Konishi, S., Honda, K., 1979. Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 277, 637-638.
    Inui, T., Hara, H., Takeguchi, T., Kim, J.B., 1997. Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO. Catal Today 36, 25-32.
    Iwasa, N., Masuda, S., Ogawa, N., Takezawa, N., 1995. Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction. Applied Catalysis A: General 125, 145-157.
    Jang, Y.J., Simer, C., Ohm, T., 2006. Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue. Mater Res Bull 41, 67-77.
    Kaneko, H., Gokon, N., Hasegawa, N., Tamaura, Y., 2005. Solar thermochemical process for hydrogen production using ferrites. Energy 30, 2171-2178.
    Kang, H.Y., Wang, H.P., 2012. Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes. Appl Energ 100, 144-147.
    Kato, M., Yoshikawa, S., Nakagawa, K., 2002. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett 21, 485-487.
    Kirk-Othmer, 1999. Concise encyclopedia of chemical technology. 12, 1.
    Koci, K., Mateju, K., Obalova, L., Krejcikova, S., Lacny, Z., Placha, D., Capek, L., Hospodkova, A., Solcova, O., 2010. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B-Environ 96, 239-244.
    Konstantinou, I.K., Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl Catal B-Environ 49, 1-14.
    Konta, R., Ishii, T., Kato, H., Kudo, A., 2004. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108, 8992-8995.
    Kudo, A., Kato, H., Nakagawa, S., 2000. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. J Phys Chem B 104, 571-575.
    Lee, J., Park, J.C., Song, H., 2008. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20, 1523-+.
    Lee, S.G., Lee, S., Lee, H.I., 2001. Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Appl Catal a-Gen 207, 173-181.
    Levchenko, A., Dobrovolsky, Y., Bukun, N., Leonova, L., Zyubina, T., Neudachina, V., Yashina, L., Tarasov, A., Shatalova, T., Shtanov, V., 2007. Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors. Russian Journal of Electrochemistry 43, 552-560.
    Levent, M., J. Gunn, D., Ali El-Bousiffi, M., 2003. Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. International Journal of Hydrogen Energy 28, 945-959.
    Li, C.L., Yuan, J.A., Han, B.Y., Jiang, L., Shangguan, W.F., 2010a. TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int J Hydrogen Energ 35, 7073-7079.
    Li, H.L., Lei, Y.G., Huang, Y., Fang, Y.P., Xu, Y.H., Zhu, L., Li, X., 2011. Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J Nat Gas Chem 20, 145-150.
    Li, Y., Wang, W.N., Zhan, Z.L., Woo, M.H., Wu, C.Y., Biswas, P., 2010b. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B-Environ 100, 386-392.
    Lim, J.A., Kim, D.H., Yoon, Y., Jeong, S.K., Park, K.T., Nam, S.C., 2012. Absorption of CO2 into Aqueous Potassium Salt Solutions of L-Alanine and L-Proline. Energ Fuel 26, 3910-3918.
    Lin, Y.-C., Tai, C.Y., 2010. Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method. Separation and Purification Technology 74, 170-177.
    Lin, Y.-C., Wang, T.-Y., Lan, C.-W., Tai, C.Y., 2010a. Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technology 200, 216-223.
    Lin, Y.C., Wang, T.Y., Lan, C.W., Tai, C.Y., 2010b. Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol 200, 216-223.
    Linsebigler, A.L., Lu, G., Yates, J.T., 1995a. Chem. Rev. 95, 735-758.
    Linsebigler, A.L., Lu, G.Q., Yates, J.T., 1995b. Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chem Rev 95, 735-758.
    Liu, M., Kitai, A.H., Mascher, P., 1992. Point-Defects and Luminescence-Centers in Zinc-Oxide and Zinc-Oxide Doped with Manganese. J Lumin 54, 35-42.
    Lo, C.C., Hung, C.H., Yuan, C.S., Hung, Y.L., 2007. Parameter effects and reaction pathways of photoreduction of CO2 over TiO2/SO42- photocatalyst. Chinese J Catal 28, 528-534.
    Luo, H.M., Takata, T., Lee, Y.G., Zhao, J.F., Domen, K., Yan, Y.S., 2004. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16, 846-849.
    Maeda, K., Domen, K., 2010. Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chem Mater 22, 612-623.
    Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J., Jacoby, W.A., 1999. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl Environ Microb 65, 4094-4098.
    Mani, P., Srivastava, R., Strasser, P., 2008. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112, 2770-2778.
    Marinakos, S.M., Feldheim, D.L., 2000. Gold particles as templates for the synthesis of hollow polymer capsules: Control of capsule dimensions and guest encapsulation. Abstr Pap Am Chem S 219, U113-U113.
    Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., 1985. Photoelectrochemical Sterilization of Microbial-Cells by Semiconductor Powders. Fems Microbiol Lett 29, 211-214.
    Melis, A., Zhang, L.P., Forestier, M., Ghirardi, M.L., Seibert, M., 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122, 127-135.
    Moon, S.C., Mametsuka, H., Tabata, S., Suzuki, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal Today 58, 125-132.
    Mott, D., Galkowski, J., Wang, L.Y., Luo, J., Zhong, C.J., 2007. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740-5745.
    Muller, A., Nasch, P.M., 2002. Recycling of silicon rejects from pv production cycle (RE-SI-CLE)
    Muradov, N.Z., 2009. Production of hydrogen from hydrocarbons. CRC PressTaylor & Francis Group 33, 101.
    Nada, A.A., Barakat, M.H., Hamed, H.A., Mohamed, N.R., Veziroglu, T.N., 2005. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. International Journal of Hydrogen Energy 30, 687-691.
    Narayanan, T.N., Shaijumon, M.M., Ajayan, P.M., Anantharaman, M.R., 2010. Synthesis of High Coercivity Core-Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties. Nanoscale Res Lett 5, 164-168.
    Nishio, J., Tokumura, M., Znad, H.T., Kawase, Y., 2006. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. J Hazard Mater 138, 106-115.
    Ollis, D.F., 2000. Photocatalytic purification and remediation of contaminated air and water. Cr Acad Sci Ii C 3, 405-411.
    Omata, K., Watanabe, Y., Umegaki, T., Ishiguro, G., Yamada, M., 2002. Low-pressure DME synthesis with Cu-based hybrid catalysts using temperature-gradient reactor. Fuel 81, 1605-1609.
    P. G. Russell, N.K., S. Srinivasan and M. Steinberg, 1977. The Electrochemical Reduction of Carbon Dioxide, Formic Acid, and Formaldehyde. J. Electrochem. Soc. 124, 1329-1338.
    Park, J.H., Kim, S., Bard, A.J., 2006. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6, 24-28.
    Park, S.S., Eom, S.M., Anpo, M., Seo, D.H., Jeon, Y., Shul, Y.G., 2011. N-doped anodic titania nanotube arrays for hydrogen production. Korean J Chem Eng 28, 1196-1199.
    Pathak, P., Meziani, M.J., Castillo, L., Sun, Y.P., 2005. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7, 667-670.
    Pokrovski, K., Jung, K.T., Bell, A.T., 2001. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 17, 4297-4303.
    Ravel, B., Newville, M., 2005. Athena and Artemis: Interactive graphical data analysis using IFEFFIT. Physica Scripta 115, 1007–1010.
    Rezaei, M., Alavi, S.M., Sahebdelfar, S., Liu, X.M., Qian, L., Yan, Z.F., 2007. CO2-CH4 reforming over nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energ Fuel 21, 581-589.
    Rostrup-Nielsen, J.R., 2001. Conversion of hydrocarbons and alcohols for fuel cells. Phys Chem Chem Phys 3, 283-288.
    Roy, S.C., Varghese, O.K., Paulose, M., Grimes, C.A., 2010. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano 4, 1259-1278.
    Russell, P.G., Kovac, N., Srinivasan, S., Steinberg, M., 1977. Electrochemical Reduction of Carbon-Dioxide, Formic-Acid, and Formaldehyde. J Electrochem Soc 124, 1329-1338.
    Sahay, P.P., 2005. Zinc oxide thin film gas sensor for detection of acetone. J Mater Sci 40, 4383-4385.
    Sarti, D., Einhaus, R., 2002. Silicon feedstock for the multi-crystalline photovoltaic industry. Sol Energ Mat Sol C 72, 27-40.
    Sayama, K., Arakawa, H., 1993. Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon-Dioxide over ZrO2 Catalyst. J Phys Chem-Us 97, 531-533.
    Sediroglu, V., Eroglu, I., Yücel, M., Türker, L., Gündüz, U., 1999. The biocatalytic effect of halobacterium halobium on photoelectrochemical hydrogen production. Journal of Biotechnology 70, 115-124.
    Shen, H.X., Xu, M.M., Yan, X., Yao, J.L., Han, S.Y., Gu, R.A., 2010. Synthesis and surface enhanced optical properties of multibranched spindle particles and core-shell structures. Colloid Surface A 353, 204-209.
    Shen, W.J., Ichihashi, Y., Matsumura, Y., 2002. A comparative study of palladium and copper catalysts in methanol synthesis. Catal Lett 79, 125-127.
    Shinde, S.S., Bhosale, C.H., Rajpure, K.Y., 2011. Photocatalytic activity of sea water using TiO2 catalyst under solar light. J Photoch Photobio B 103, 111-117.
    Shukla, P., Fatimah, I., Wang, S.B., Ang, H.M., Tade, M.O., 2010. Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater. Catal Today 157, 410-414.
    Simamora, A.J., Hsiung, T.L., Chang, F.C., Yang, T.C., Liao, C.Y., Wang, H.P., 2012. Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2. Int J Hydrogen Energ 37, 13855-13858.
    Slokar, Y.M., Majcen Le Marechal, A., 1998. Methods of decoloration of textile wastewaters. Dyes and Pigments 37, 335-356.
    Som, T., Karmakar, B., 2009. Core-Shell Au-Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses. Nano Res 2, 607-616.
    Spadavecchia, J., Prete, P., Lovergine, N., Tapfer, L., Rella, R., 2005. Au nanoparticles prepared by physical method on Si and sapphire substrates for biosensor applications. J Phys Chem B 109, 17347-17349.
    Srinivas, B., Shubhamangala, B., Lalitha, K., Reddy, P.A.K., Kumari, V.D., Subrahmanyam, M., De, B.R., 2011. Photocatalytic Reduction of CO2 over Cu-TiO2/Molecular Sieve 5A Composite. Photochem Photobiol 87, 995-1001.
    Stojic, D.L., Marceta, M.P., Sovilj, S.P., Miljanic, S.S., 2003. Hydrogen generation from water electrolysis - possibilities of energy saving. J Power Sources 118, 315-319.
    Sun, X.J., Liu, H., Dong, J.H., Wei, J.Z., Zhang, Y., 2010. Preparation and Characterization of Ce/N-Codoped TiO2 Particles for Production of H-2 by Photocatalytic Splitting Water Under Visible Light. Catal Lett 135, 219-225.
    Tsai, T.H., 2011. Modified sedimentation system for improving separation of silicon and silicon carbide in recycling of sawing waste. Sep Purif Technol 78, 16-20.
    Tseng, I.H., Wu, J.C.S., 2004. Chemical states of metal-loaded titania in the photoreduction of CO2. Catal Today 97, 113-119.
    Uner, D., Oymak, M.M., 2012. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal Today 181, 82-88.
    Varghese, O.K., Paulose, M., LaTempa, T.J., Grimes, C.A., 2009. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Lett 9, 731-737.
    Varghese, O.K., Paulose, M., LaTempa, T.J., Grimes, C.A., 2010. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels (vol 9, pg 731, 2009). Nano Lett 10, 750-750.
    Vu, D.Q., Koros, W.J., Miller, S.J., 2002. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Ind Eng Chem Res 41, 367-380.
    Wagh, M.S., Jain, G.H., Patil, D.R., Patil, S.A., Patil, L.A., 2006. Modified zinc oxide thick film resistors as NH3 gas sensor. Sensor Actuat B-Chem 115, 128-133.
    Wang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., 2009. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. International Journal of Hydrogen Energy 34, 5683-5690.
    West, A.R., 1999. Basic Solid State Chemistry. Wiley, New York.
    Wu, J.C.S., Lin, H.M., 2005. Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int J Photoenergy 7, 115-119.
    Wu, X.J., Xu, D.S., 2010. Soft Template Synthesis of Yolk/Silica Shell particles. Adv Mater 22, 1516-1520.
    Wu, Y.-F., Chen, Y.-M., 2009a. Separation of silicon and silicon carbide using an electrical field. Separation and Purification Technology 68, 70-74.
    Wu, Y.F., Chen, Y.M., 2009b. Separation of silicon and silicon carbide using an electrical field. Sep Purif Technol 68, 70-74.
    Yang, C., Ma, Z.Y., Zhao, N., Wei, W., Hu, T.D., Sun, Y.H., 2006. Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catal Today 115, 222-227.
    Yave, W., Car, A., Funari, S.S., Nunes, S.P., Peinemann, K.V., 2010. CO2-Philic Polymer Membrane with Extremely High Separation Performance. Macromolecules 43, 326-333.
    Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P., 2004. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304, 711-714.
    Yoneyama, H., 1997. Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal Today 39, 169-175.
    Yoshino, F., Ikeda, H., Masukawa, H., Sakurai, H., 2007. High photobiological hydrogen production activity of a Nostoc sp PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9, 101-112.
    Yu, J.C., Ho, W.K., Yu, J.G., Yip, H., Wong, P.K., Zhao, J.C., 2005. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39, 1175-1179.
    Yu, J.G., Yu, X.X., 2008. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42, 4902-4907.
    Zhao, B.T., Su, Y.X., Tao, W.W., Li, L.L., Peng, Y.C., 2012. Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review. Int J Greenh Gas Con 9, 355-371.
    Zhong, C.J., Maye, M.M., 2001. Core-shell assembled nanoparticles as catalysts. Adv Mater 13, 1507-+.
    Zhou, G.J., Lu, M.K., Yang, Z.S., 2006. Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures. Langmuir 22, 5900-5903.
    Zoy, A., Nassiopoulou, A.G., 2008. Growth and electrical characterization of thin conductive Au nanoparticle chains on oxidized Si substrates between electrodes for sensor applications. Phys Status Solidi A 205, 2621-2624.

    無法下載圖示 校內:2018-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE