簡易檢索 / 詳目顯示

研究生: 盧建邦
Lu, Cheng-pang
論文名稱: 穩態參震波現象的描述暨其相關斜震波理論的計算
Steady Mach reflection phenomena and their associated theoretical oblique shock calculations.
指導教授: 劉中堅
Liu, Jong-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 87
中文關鍵詞: 局部擬似馬赫反射斜震波馬赫反射
外文關鍵詞: MR, shock wave, Mach reflection, PMR
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文說明與討論應用三震波匯流場十次多項式方程式結合斜震波理論計算穩態馬赫反射 (SMR) 或 (局部) 擬似馬赫反射 (PMR) 流場三震波理論多重解的方法。求解 SMR或局部PMR流場多重解較易了解的方法係由入射與反射斜震波極上交點解的移動行為著眼,因為它們分別控制了( 與 ) 及( 與 )的解之行為。我們由十次多項式方程式計算得到馬赫莖壓力比值後代入論文中T1與G1斜震波關係式可求得 與 。隨後應用SMR機械平衡條件多項式方程求解其 ,若該解小於給予SMR題目的 ,則所得到的 與 解為需分別修改成180°- 及- 以成為Inverse MR 解; 否則所得到的 與 解就是正確的MR之 與 解。我們其次應用T1與H1斜震波關係式及分離流的轉折角邊界條件可求得 與 ,隨後應用SMR前後分界條件的多項式方程求解其 ,若該解小於給予SMR題目的 ,則所得的 與 解就是後向反射震波MR正確的答案; 否則所得到該 與 解需分別修改成180°- 及- 以成為前向反射震波MR正確之 與 的解。

    Methods of calculating multiply possible theoretical solutions of steady Mach reflections (MR) or (local) pseudo-steady MR using the tenth degree polynomial equation of three-shock confluences combining with oblique shock calculations are discussed and summarized.

    1. Multiply possible theoretical solutions of steady MR or (local) pseudo-steady MR can be better understood by moving along the incident oblique shock polar for and , and along the reflected shock polar for and . The intersected solutions move from beneath to , then to forward- and consequently to backward-facing reflected shock solutions, and they finally enter inverse MR solutions, as ’s systematically decrease from beyond forbidden ( < 1) to forbidden then to incident Mach angle conditions. It is impossible for intersected solutions to move into the weak branch of left orienting incident shock polars.
    2. First, obtaining the Mach stem pressure ratio from the SMR tenth degree polynomial equation, then using oblique shock relations calculating and , respectively. Secondly, theoretical von Neumann condition polynomial equation is applied to determine its . If the problem given < von Neumann’s , the obtained and are inverse MR solutions with being 180°- and being - . Otherwise, the obtained and are correct solutions of MR.
    3. Pressure jump across the reflected shock can be readily determined from the Mach stem pressure ratio. The same oblique shock relations of part 2, the oblique shock relations of pressure ratio and up-/down-stream flow Mach numbers and the slipstream deflection compatibility relations are then used to calculate and . Thirdly, theoretical separating forward-/backward- facing reflected shock polynomial equation is applied to determine its . If the problem’s <separating forward-/backward-facing reflected shock solution’s , the obtained and are correct backward-facing reflected shock solutions. Otherwise, they are forward-facing reflected shock solutions with being 180°- calculated and being –calculated . A better way of determining is by = - with being correctly calculated in the first place.

    目錄 目錄……………………………………………………………………………V 表目錄………………………………………………………………………...X 圖目錄…………………………………………………………………….….XI 符號說明…………………………………………………………………...XIV 第一章 緒論…………………………………………………………………1 第二章 三震波匯流現象之理論分析……………………………………5 2-1 穩態馬赫反射流場之三震波十階多項式理論…………………………5 2-2 穩態馬赫反射流場壓力、轉折角震波極圖解法………………………11 2-3 穩態馬赫反射流場之十階多項式理論應用於擬似穩態馬赫反射流場 ………………………………………………………………………….……..14 第三章 應用馬赫反射十次多項式方程式與 斜震波理論求解馬赫反射交點解的性質…………………………………………………18 3-1-1 A-1、將 、 、 代入3階多項式公式 (其中a=tan ,n= )求 。…………………………………………23 3-1-2 A-2、將 、 、 代入十次第四式 求解 。……28 3-2-1 B-1、將 、 、 代入斜震波(Q4)公式 (其中 、 、 ) 求取 。…………30 3-2-2 B-2、將 、 、 代入斜震波(B1)公式 (其中 、 、 、 、 、 ) 求取 ……….35 3-2-3 B-3、將 、 、 代入斜震波(T4)公式 求解 。…………………39 3-3 D-1、將 、 、 代入斜震波(T4)公式 求取 。…………………42 3-4 E-1、將 、 、 代入斜震波(T1)公式 求解 。…………………………45 3-5 F-1、將 、 、 代入NACA(132)式 求 。……47 3-6-1 G-1、將 、 、 代入十次第四式 求取 。………49 3-6-2 G-2、將 、 、 代入錢論文第10式 、 )求取 。………………………………52 3-7-1 H-1、將 、 、 代入十次第三式 求取 值…………………………………………………………………...…55 3-8-1 I-1、將 、 、 輸入(T1)斜震波公式 求取 。………………………………………………………………57 3-9-1 K-1、將 、 、 代入十次第三式 求解 。………………………………………………………………60 3-10-1 L-1、將 、 、 代入NACA(132)式 求解 。…..62 3-11-1 N-1、將 、 、 代入M4公式, 求解下游馬赫數.......64 3-12-1 O-1、將 、 、 代入M1公式, 求解上游馬赫數。………………………………………………………66 3-13-1 S、將 、 、 代入十次第四式 求解上游馬赫數 ………………………………………………………………………..…68 3-14-1 W、將 、 、 代入M4公式, 求解 ………70 3-15-1 CC、將 、 、 代入M4公式 =0求解 ………73 3-16-1 DD、將 、 、 代入NACA(132)式 求解 。……………………………………………………………76 3-17-1 HH、將 、 、 代入T1公式 求解上游馬赫數。……………………………………………………..78 3-18-1 將 、 、 代入十次第三式 求解 上游馬赫數 。……………………………………………………80 第四章 結論……………………………………………………………82 參考文獻………………………………………………………………..85

    Ames Aeronautical Lab. Rep., ”AMES Equations, Tables and Charts for
    Compressible Flow,” NASA, No. 1135, (1953).
    Bleakney, W. and Taub, A.H., ”Interaction of shock waves. “ Rev. Mod.
    Phys.,Vol. 21 (1949).
    Smith, L.G., “Photographic investigation of the reflection of plane shocks
    in air.” OSRD Rep.6271. Off. Sci. Res. Dev., Washington, DC (1945)
    Bryson, Arthur Earl, Jr.: An Experimental Investigation of Trans-sonic
    Flow Past Two-Dimensional Wedge and Circular-Are Section Using a
    Mach-Zehnder Interferometer. NACA Rep. 1094 (1952)
    Ben-Dor, G. and Glass, I.I., “Domains and boundaries of nonstationary
    oblique shock wave reflexions. 1. Diatomic gas.“ J. Fluid Mech. Vol. 92,
    pp. 459-496 (1979).
    Ben-Dor, G., ”Shock Wave Reflection Phenomena,” Springer-Verlag,
    New York, (1992)
    Ben-Dor, G, and Takayama K, “The phenomena of shock wave
    reflection – a review of unsolved problems and future research needs,”
    Shock Waves, (1992)
    Colella, P. and Henderson, L.F., “The von Neumann paradox for the
    diffraction of weak shock waves.” J. Fluid Mech., Vol. 213, pp 71-94
    (1990).
    Griffith, W.C., “Shock waves.” J. Fluid Mech, Vol. 106, pp. 81-101
    (1981)
    86
    Henderson, L. F., ”On the Confluence of Three Shock Waves in a Perfect
    Gas, ” Aero. Quart., Vol. 15, pp. 181-197 (1964).
    Henderson, L. F., ”Regions and Boundaries for Diffracting Shock Wave
    Systems,” Z. Angew, Vol 67, pp. 1-14 (1987).
    Hunter, J., Brio. M., ”The von Neumann Paradox in Weak Shock
    Reflection,” J Fluid Mech., Vol. 422, pp. 193-205 (2000).
    Liu, J.J., ”Sound Wave Structures Downstream of Pseudo-Steady Weak
    and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332
    (1996).
    Liu, J.J., ”A one-dimensional stream-tube interpretation of Liu’s revised
    three-shock theory for pseudo-steady Mach reflections,” The 23 rd
    International symposium on shock Wave, Fort Worth, Texas. USA (2001).
    Liu, J.J., Chuang, C.C., Chuang, H.W., ”Multiple Solutions of Steady
    Mach Reflections in Monatomic Gases,” The 19th Nat’l Conference on
    Mechanical Engineering, Yun-Lin, No. A5-004, (2002).
    Liu, J.J., “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical
    Solutions of Steady Mach Reflections in Diatomic Gases” The 5th
    International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan,
    120-127, (2003).
    Liu, J.J. and Shih, M.C., “Preliminary Regimes of Multiplicity of
    Perfect-Gases Three-Shock Theoretical Solutions of Steady Mach
    Reflections,” The 27th Nat’l Conference on Theoretical and Applied
    Mechanics, 719-727, (2003).
    Liu Jong-Jian, Lin Cheng-Chung “A map of multiplicity of perfect-gas
    global three-shock theoretical solutions of pseudo-steady Mach
    reflections in diatomic gases,” 中國機械工程學會第二十二屆全國學術
    研討會, 桃園, 計畫編號:NSC-93-2212-E-006-070, pp. 289 –
    294(2005)
    87
    Liu, J.J., "A clarification to misconceptions regarding the von Neumann
    paradox of weak Mach reflections",” The 26th International Symposium
    on Shock Waves, Gottingen, Germany (2007).
    Neumann, J. von, ”Oblique Reflection of Shocks,” Explos. Res. Rep. 12,
    Navy Dept., Bureau of Ordinance, Washington, DC, (1943).
    Tsien Hsue-Shen, Judson R. Baron, ” Airfoil in Slightly Supersonic
    Flow” Massachusetts Institute of Technology, (1949)
    Thompson M.J., “A Note on the Calculation of Oblique Shock Wave
    Characteristics.” J. Aeronautical Sciences, (1950)
    Zakharian AR, Brio M, Hunter JK, Webb GM ”The von Neumann
    paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205
    (2000).
    李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析:
    SF6」,國立成功大學工程科學系碩士論文,台南 (2003)。
    石祐菘,「三原子分子理想氣體穩態馬赫反射三震波理論多重解分
    析」,國立成功大學工程科學系碩士論文,台南 (2004)。

    下載圖示 校內:立即公開
    校外:2008-02-18公開
    QR CODE