| 研究生: |
許景舜 Hsu, Jing-Shun |
|---|---|
| 論文名稱: |
心肺疾病患者進行離心腳踏車訓練之效果探討:系統性回顧 The Effect of Eccentric Cycling Training in Cardiorespiratory Diseases Patients: A Systematic Review |
| 指導教授: |
蔡昆霖
Tsai, Kun-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 離心收縮 、離心運動 、離心腳踏車 、心肺疾病 、心臟衰竭 、冠狀動脈疾病 、慢性阻塞性肺病 、系統性回顧 |
| 外文關鍵詞: | Eccentric Contraction, Eccentric Cycling, Eccentric Exercise, Cardiorespiratory Diseases, Cardiopulmonary Diseases, Chronic Heart Failure, COPD, Coronary Artery Diseases, Systematic Reivew |
| 相關次數: | 點閱:241 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心肺病人時常會有運動耐受度差以及喘的問題,並且會帶來不同的負面影響,而一個完善的運動計畫已經被證實可以有效改善這類的問題。然而患者有時會因症狀過於嚴重而無法完成運動。這時一個新的運動訓練模式或許可以試圖改善這類的矛盾。離心運動相較於傳統的向心運動,能夠在一樣的強度下消耗較少的能量。近幾年來離心腳踏車開始使用於心肺病人的復健,跟向心腳踏車相比,在一樣的強度下患者在使用離心腳踏車時,其自覺的疲勞程度以及症狀的嚴重度會下降。許多文獻也證實了離心腳踏車對於心肺病人是安全且可行的。然而離心腳踏車對於心肺病人的訓練效果卻尚未有定論,雖然大部分的文章指出離心腳踏車提升肌肉力量的效果較向心腳踏車來的好,但對於提升攝氧量的結果則較不一致。同時目前也沒有統一的方式來訂定離心腳踏車的運動處方。因此本篇系統性回顧希望能統整出離心腳踏車的效果,以及其運動處方的設計。方法:收錄及排除條件:實驗設計為單或雙組訓練前後測比較之已發表全文,需招募患有心肺疾病的成人,並且含有一項離心腳踏車的訓練計畫。回顧性的文章將會被排除。總共會搜尋六個資料庫,Embase, PubMed, Cochrane, CINAHL, SPORTDiscus, and Academic Research。誤差風險評估及研究品質將會使用RoB 2、ROBINS-I、PEDro、NIH quality assessment tool for before-after (pre-post) study without control group來完成。資料擷取會以手動的方式完成,若是合適則會進行統合分析。結果:總共收錄了十二篇文章,研究品質、誤差風險評估的結果分別為PEDro五到七、中等;有些疑慮、及嚴重風險,結果顯示離心腳踏車不但安全且可以有效提升運動耐受度。常見的運動處方為為期共五到十周的訓練、每周三到五次、每次三十分鐘、轉速為每分鐘十五到二十轉或六十轉。強度的指標包含了自覺用力係數、心跳、攝氧量、輸出功率等。共有七項統合分析,其中只有運動測試最大功率輸出有顯著的偏項離心腳踏車,其他項目在攝氧量、下肢肌力、六分鐘行走測試及身體組成等則沒有達到顯著差異。結論:離心腳踏車可以做為替代的訓練模式,幫助病人達到足夠的強度及訓練時間。運動處方的設計可以根據患者的情況做調整,同時考慮運動特異性,為訓練目標挑選合適的強度指標。
Background and Purpose: Cardiorespiratory diseases patients often showed symptoms like dyspnea and exercise intolerance. Exercise is effective in improving exercise intolerance and associated outcomes. However, due to severe symptoms, patients sometimes have difficulty completing exercise. Therefore, a new exercise modality is warranted. Eccentric (ECC) cycling training allows exercises to be performed at a lower cost of energy and RPE. Lots of studies investigated the feasibility and effectiveness of ECC cycling, and the results showed it was safe and can be completed with low level of symptoms and RPE. However, the effect of ECC cycling is controversial. Moreover, there has been a lack of agreement on how to prescribe ECC cycling in this population. The aim of this study is to determine the effectiveness, tolerability, and the preferred prescription methods of ECC cycling in this population. Methods: Inclusion criteria: published full-text articles with single- or two-group pretest-posttest interventional design, recruiting adults with cardiorespiratory diseases and including an ECC cycling program. Review articles were excluded. The following 6 databases were searched from their inception to July, 2022: Embase, PubMed, Cochrane Library, CINAHL, SPORTDiscus, and Academic Research. Risk of bias and quality assessment were done using RoB 2, ROBINS-I, PEDro, and NIH quality assessment tool. Data extraction and analysis was performed manually and meta-analysis would be performed when seems fit. Results: There were 12 reports included, and the results of PEDro, NIH quality assessment tool, RoB 2, and ROBINS-I were between 5–7, fair, mostly some concerns, and serious risks respectively. The findings showed that ECC cycling was safe with promising effect in improving muscle strength and mass, power output, VO2, and 6MWD. The common settings for ECC cycling training are: 5–10 weeks, 3–5 sessions/week, 30 min/session at 15–20 rpm or 60 rpm. Intensity can be defined using RPE, HR, VO2, and power output. Also, adopting a prior familiarization period was important in preventing muscle damage. There were 7 findings that underwent meta-analysis, among, only CPET peak power showed significant favouring of ECC cycling training, while the others were nonsignificant, for example, VO2, muscle strength, and body composition, etc. Conclusions: ECC cycling training is promising and safe. It can be used to improve exercise capacity in this population. Clinical Relevance: ECC cycling training can be an alternative exercise to allow the patients to be trained in sufficient intensity and duration. Clinical practitioner can customize the exercise design by selecting the more suitable method according to the clients’ condition and warranted effects.
Abudiab, M. M., Redfield, M. M., Melenovsky, V., Olson, T. P., Kass, D. A., Johnson, B. D., & Borlaug, B. A. (2013). Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail, 15(7), 776-785. doi:10.1093/eurjhf/hft026
Adolfo, J. R., Dhein, W., & Sbruzzi, G. (2019). Intensity of physical exercise and its effect on functional capacity in COPD: systematic review and meta-analysis. J Bras Pneumol, 45(6), e20180011. doi:10.1590/1806-3713/e20180011
Agostoni, P. G., Bussotti, M., Palermo, P., & Guazzi, M. (2002). Does lung diffusion impairment affect exercise capacity in patients with heart failure? Heart, 88(5), 453-459. doi:10.1136/heart.88.5.453
Alcazar, J., Losa-Reyna, J., Rodriguez-Lopez, C., Navarro-Cruz, R., Alfaro-Acha, A., Ara, I., . . . Guadalupe-Grau, A. (2019). Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. Scand J Med Sci Sports, 29(10), 1591-1603. doi:10.1111/sms.13494
Amann, M., Venturelli, M., Ives, S. J., Morgan, D. E., Gmelch, B., Witman, M. A., . . . Richardson, R. S. (2014). Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. Int J Cardiol, 174(2), 368-375. doi:10.1016/j.ijcard.2014.04.157
Anderson, L., Oldridge, N., Thompson, D. R., Zwisler, A. D., Rees, K., Martin, N., & Taylor, R. S. (2016). Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol, 67(1), 1-12. doi:10.1016/j.jacc.2015.10.044
Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A. D., Rees, K., Martin, N., & Taylor, R. S. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev, 2016(1), Cd001800. doi:10.1002/14651858.CD001800.pub3
Bagni, M. A., Cecchi, G., Colombini, B., & Colomo, F. (2002). A Non-Cross-Bridge Stiffness in Activated Frog Muscle Fibers. Biophysical Journal, 82(6), 3118-3127. doi:https://doi.org/10.1016/S0006-3495(02)75653-1
Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., . . . Milani, R. V. (2010). Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation, 122(2), 191-225. doi:10.1161/CIR.0b013e3181e52e69
Balady, G. J., Williams, M. A., Ades, P. A., Bittner, V., Comoss, P., Foody, J. M., . . . Southard, D. (2007). Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation, 115(20), 2675-2682. doi:10.1161/circulationaha.106.180945
Bandeen-Roche, K., Xue, Q. L., Ferrucci, L., Walston, J., Guralnik, J. M., Chaves, P., . . . Fried, L. P. (2006). Phenotype of frailty: characterization in the women's health and aging studies. J Gerontol A Biol Sci Med Sci, 61(3), 262-266. doi:10.1093/gerona/61.3.262
Bellet, R. N., Adams, L., & Morris, N. R. (2012). The 6-minute walk test in outpatient cardiac rehabilitation: validity, reliability and responsiveness--a systematic review. Physiotherapy, 98(4), 277-286. doi:10.1016/j.physio.2011.11.003
Besson, D., Joussain, C., Gremeaux, V., Morisset, C., Laurent, Y., Casillas, J. M., & Laroche, D. (2013). Eccentric training in chronic heart failure: feasibility and functional effects. Results of a comparative study. Ann Phys Rehabil Med, 56(1), 30-40. doi:10.1016/j.rehab.2013.01.003
Bittner, V., Weiner, D. H., Yusuf, S., Rogers, W. J., McIntyre, K. M., Bangdiwala, S. I., . . . et al. (1993). Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. Jama, 270(14), 1702-1707.
Booth, F. W., Roberts, C. K., Thyfault, J. P., Ruegsegger, G. N., & Toedebusch, R. G. (2017). Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiological reviews, 97(4), 1351-1402. doi:10.1152/physrev.00019.2016
Borlaug, B. A., Kane, G. C., Melenovsky, V., & Olson, T. P. (2016). Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J, 37(43), 3293-3302. doi:10.1093/eurheartj/ehw241
Bourbeau, J., De Sousa Sena, R., Taivassalo, T., Richard, R., Jensen, D., Baril, J., . . . Perrault, H. (2020). Eccentric versus conventional cycle training to improve muscle strength in advanced COPD: A randomized clinical trial. Respiratory Physiology & Neurobiology, 276, N.PAG-N.PAG. doi:10.1016/j.resp.2020.103414
Casillas, J. M., Besson, D., Hannequin, A., Gremeaux, V., Morisset, C., Tordi, N., . . . Laroche, D. (2016). Effects of an eccentric training personalized by a low rate of perceived exertion on the maximal capacities in chronic heart failure: a randomized controlled trial. Eur J Phys Rehabil Med, 52(2), 159-168.
Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896. doi:10.1113/JP272270
Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract? The Journal of physiology, 595(9), 2883-2896. doi:10.1113/jp272270
Conraads, V. M., Deaton, C., Piotrowicz, E., Santaularia, N., Tierney, S., Piepoli, M. F., . . . Jaarsma, T. (2012). Adherence of heart failure patients to exercise: barriers and possible solutions: a position statement of the Study Group on Exercise Training in Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 14(5), 451-458. doi:10.1093/eurjhf/hfs048
Cowie, A., Buckley, J., Doherty, P., Furze, G., Hayward, J., Hinton, S., . . . Mills, J. (2019). Standards and core components for cardiovascular disease prevention and rehabilitation. Heart, 105(7), 510-515. doi:10.1136/heartjnl-2018-314206
De Smedt, D., Clays, E., Annemans, L., Doyle, F., Kotseva, K., Pająk, A., . . . De Bacquer, D. (2013). Health related quality of life in coronary patients and its association with their cardiovascular risk profile: results from the EUROASPIRE III survey. Int J Cardiol, 168(2), 898-903. doi:10.1016/j.ijcard.2012.10.053
Del Buono, M. G., Arena, R., Borlaug, B. A., Carbone, S., Canada, J. M., Kirkman, D. L., . . . Abbate, A. (2019). Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol, 73(17), 2209-2225. doi:10.1016/j.jacc.2019.01.072
Denadai, B. S., de Aguiar, R. A., de Lima, L. C., Greco, C. C., & Caputo, F. (2017). Explosive Training and Heavy Weight Training are Effective for Improving Running Economy in Endurance Athletes: A Systematic Review and Meta-Analysis. Sports Med, 47(3), 545-554. doi:10.1007/s40279-016-0604-z
di Cagno, A., Iuliano, E., Buonsenso, A., Giombini, A., Di Martino, G., Parisi, A., . . . Fiorilli, G. (2020). Effects of Accentuated Eccentric Training vs Plyometric Training on Performance of Young Elite Fencers. Journal of sports science & medicine, 19(4), 703-713. Retrieved from https://pubmed.ncbi.nlm.nih.gov/33239944
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7675629/
Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med, 47(4), 663-675. doi:10.1007/s40279-016-0624-8
Edwards, R. H., Newham, D. J., Jones, D. A., & Chapman, S. J. (1984). Role of mechanical damage in pathogenesis of proximal myopathy in man. Lancet, 1(8376), 548-552. doi:10.1016/s0140-6736(84)90941-3
Ellis, R., Shields, N., Lim, K., & Dodd, K. J. (2015). Eccentric exercise in adults with cardiorespiratory disease: a systematic review. Clin Rehabil, 29(12), 1178-1197. doi:10.1177/0269215515574783
English, K. L., Loehr, J. A., Lee, S. M., & Smith, S. M. (2014). Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. Eur J Appl Physiol, 114(11), 2263-2280. doi:10.1007/s00421-014-2951-5
Eston, R. G., Finney, S., Baker, S., & Baltzopoulos, V. (1996). Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. J Sports Sci, 14(4), 291-299. doi:10.1080/02640419608727714
Evangelista, L., Doering, L. V., Dracup, K., Westlake, C., Hamilton, M., & Fonarow, G. C. (2003). Compliance behaviors of elderly patients with advanced heart failure. J Cardiovasc Nurs, 18(3), 197-206; quiz 207-198. doi:10.1097/00005082-200307000-00005
Fan, Y., Gu, X., & Zhang, H. (2019). Prognostic value of six-minute walk distance in patients with heart failure: A meta-analysis. Eur J Prev Cardiol, 26(6), 664-667. doi:10.1177/2047487318797400
Fiuza-Luces, C., Santos-Lozano, A., Joyner, M., Carrera-Bastos, P., Picazo, O., Zugaza, J. L., . . . Lucia, A. (2018). Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature Reviews Cardiology, 15(12), 731-743. doi:10.1038/s41569-018-0065-1
Fiuza-Luces, C., Santos-Lozano, A., Joyner, M., Carrera-Bastos, P., Picazo, O., Zugaza, J. L., . . . Lucia, A. (2018). Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol, 15(12), 731-743. doi:10.1038/s41569-018-0065-1
Franchi, M. V., Atherton, P. J., Reeves, N. D., Flück, M., Williams, J., Mitchell, W. K., . . . Narici, M. V. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf), 210(3), 642-654. doi:10.1111/apha.12225
Franklin, B. A., Thompson, P. D., Al-Zaiti, S. S., Albert, C. M., Hivert, M. F., Levine, B. D., . . . Eijsvogels, T. M. H. (2020). Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective-An Update: A Scientific Statement From the American Heart Association. Circulation, 141(13), e705-e736. doi:10.1161/cir.0000000000000749
Fyfe, J. J., Bishop, D. J., Zacharewicz, E., Russell, A. P., & Stepto, N. K. (2016). Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 310(11), R1297-1311. doi:10.1152/ajpregu.00479.2015
Gea, J., Pascual, S., Casadevall, C., Orozco-Levi, M., & Barreiro, E. (2015). Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. Journal of thoracic disease, 7(10), E418-E438. doi:10.3978/j.issn.2072-1439.2015.08.04
Gergley, J. C. (2009). Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res, 23(3), 979-987. doi:10.1519/JSC.0b013e3181a0629d
Giannitsi, S., Bougiakli, M., Bechlioulis, A., Kotsia, A., Michalis, L. K., & Naka, K. K. (2019). 6-minute walking test: a useful tool in the management of heart failure patients. Ther Adv Cardiovasc Dis, 13, 1753944719870084. doi:10.1177/1753944719870084
Gäbler, M., Prieske, O., Hortobágyi, T., & Granacher, U. (2018). The Effects of Concurrent Strength and Endurance Training on Physical Fitness and Athletic Performance in Youth: A Systematic Review and Meta-Analysis. Frontiers in physiology, 9, 1057-1057. doi:10.3389/fphys.2018.01057
Gremeaux, V., Duclay, J., Deley, G., Philipp, J. L., Laroche, D., Pousson, M., & Casillas, J. M. (2010). Does eccentric endurance training improve walking capacity in patients with coronary artery disease? A randomized controlled pilot study. Clinical Rehabilitation, 24(7), 590-599. doi:10.1177/0269215510362322
Group, J. C. S. J. W. (2014). Guidelines for Rehabilitation in Patients With Cardiovascular Disease (JCS 2012)
– Digest Version –. Circulation Journal, advpub. doi:10.1253/circj.CJ-66-0094
Guadalupe-Grau, A., Aznar-Laín, S., Mañas, A., Castellanos, J., Alcázar, J., Ara, I., . . . García-García, F. J. (2017). Short- and Long-Term Effects of Concurrent Strength and HIIT Training in Octogenarians with COPD. J Aging Phys Act, 25(1), 105-115. doi:10.1123/japa.2015-0307
Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med, 34(14), 967-981. doi:10.2165/00007256-200434140-00003
Hamilton, D. M., & Haennel, R. G. (2000). Validity and reliability of the 6-minute walk test in a cardiac rehabilitation population. J Cardiopulm Rehabil, 20(3), 156-164. doi:10.1097/00008483-200005000-00003
Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159(4), 738-749. doi:10.1016/j.cell.2014.10.029
Herzog, W. (2014a). Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol (1985), 116(11), 1407-1417. doi:10.1152/japplphysiol.00069.2013
Herzog, W. (2014b). The role of titin in eccentric muscle contraction. J Exp Biol, 217(Pt 16), 2825-2833. doi:10.1242/jeb.099127
Herzog, W., & Leonard, T. R. (2002). Force enhancement following stretching of skeletal muscle: a new mechanism. J Exp Biol, 205(Pt 9), 1275-1283.
Herzog, W., Schappacher, G., DuVall, M., Leonard, T. R., & Herzog, J. A. (2016). Residual Force Enhancement Following Eccentric Contractions: A New Mechanism Involving Titin. Physiology (Bethesda), 31(4), 300-312. doi:10.1152/physiol.00049.2014
Hessel, A. L., Lindstedt, S. L., & Nishikawa, K. C. (2017). Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Frontiers in Physiology, 8(70). doi:10.3389/fphys.2017.00070
Hody, S., Croisier, J.-L., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric Muscle Contractions: Risks and Benefits. Frontiers in physiology, 10. doi:10.3389/fphys.2019.00536
Häkkinen, K., Alen, M., Kraemer, W. J., Gorostiaga, E., Izquierdo, M., Rusko, H., . . . Paavolainen, L. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol, 89(1), 42-52. doi:10.1007/s00421-002-0751-9
Horowits, R., Kempner, E. S., Bisher, M. E., & Podolsky, R. J. (1986). A physiological role for titin and nebulin in skeletal muscle. Nature, 323(6084), 160-164. doi:10.1038/323160a0
Inostroza, M., Valdés, O., Tapia, G., Núñez, O., Kompen, M. J., Nosaka, K., & Peñailillo, L. (2022). Effects of eccentric vs concentric cycling training on patients with moderate COPD. European journal of applied physiology, 122(2), 489-502. doi:10.1007/s00421-021-04850-x
Joumaa, V., Leonard, T. R., & Herzog, W. (2008). Residual force enhancement in myofibrils and sarcomeres. Proc Biol Sci, 275(1641), 1411-1419. doi:10.1098/rspb.2008.0142
Karagiannis, C., Savva, C., Mamais, I., Efstathiou, M., Monticone, M., & Xanthos, T. (2017). Eccentric exercise in ischemic cardiac patients and functional capacity: A systematic review and meta-analysis of randomized controlled trials. Ann Phys Rehabil Med, 60(1), 58-64. doi:10.1016/j.rehab.2016.10.007
Katz, S. D., Hryniewicz, K., Hriljac, I., Balidemaj, K., Dimayuga, C., Hudaihed, A., & Yasskiy, A. (2005). Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation, 111(3), 310-314. doi:10.1161/01.Cir.0000153349.77489.Cf
Khosravi, M., Tayebi, S. M., & Safari, H. (2013). Single and concurrent effects of endurance and resistance training on pulmonary function. Iran J Basic Med Sci, 16(4), 628-634.
Killian, K. J., Leblanc, P., Martin, D. H., Summers, E., Jones, N. L., & Campbell, E. J. (1992). Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis, 146(4), 935-940. doi:10.1164/ajrccm/146.4.935
Kudiarasu, C., Rohadhia, W., Katsura, Y., Koeda, T., Singh, F., & Nosaka, K. (2021). Eccentric-only versus concentric-only resistance training effects on biochemical and physiological parameters in patients with type 2 diabetes. BMC Sports Sci Med Rehabil, 13(1), 162. doi:10.1186/s13102-021-00384-z
LaStayo, P., Marcus, R., Dibble, L., Frajacomo, F., & Lindstedt, S. (2014). Eccentric exercise in rehabilitation: safety, feasibility, and application. J Appl Physiol (1985), 116(11), 1426-1434. doi:10.1152/japplphysiol.00008.2013
LaStayo, P. C., Woolf, J. M., Lewek, M. D., Snyder-Mackler, L., Reich, T., & Lindstedt, S. L. (2003). Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther, 33(10), 557-571. doi:10.2519/jospt.2003.33.10.557
Lee, J. F., Barrett-O'Keefe, Z., Nelson, A. D., Garten, R. S., Ryan, J. J., Nativi-Nicolau, J. N., . . . Wray, D. W. (2016). Impaired skeletal muscle vasodilation during exercise in heart failure with preserved ejection fraction. Int J Cardiol, 211, 14-21. doi:10.1016/j.ijcard.2016.02.139
Leonard, T. R., & Herzog, W. (2010). Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am J Physiol Cell Physiol, 299(1), C14-20. doi:10.1152/ajpcell.00049.2010
Lipkin, D. P., Scriven, A. J., Crake, T., & Poole-Wilson, P. A. (1986). Six minute walking test for assessing exercise capacity in chronic heart failure. Br Med J (Clin Res Ed), 292(6521), 653-655. doi:10.1136/bmj.292.6521.653
Lira, V. A., Benton, C. R., Yan, Z., & Bonen, A. (2010). PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab, 299(2), E145-161. doi:10.1152/ajpendo.00755.2009
Long, L., Mordi, I. R., Bridges, C., Sagar, V. A., Davies, E. J., Coats, A. J., . . . Taylor, R. S. (2019). Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst Rev, 1(1), Cd003331. doi:10.1002/14651858.CD003331.pub5
Maack, C., Lehrke, M., Backs, J., Heinzel, F. R., Hulot, J. S., Marx, N., . . . Heymans, S. (2018). Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J, 39(48), 4243-4254. doi:10.1093/eurheartj/ehy596
MacMillan, N. J., Kapchinsky, S., Konokhova, Y., Gouspillou, G., de Sousa Sena, R., Jagoe, R. T., . . . Taivassalo, T. (2017). Eccentric Ergometer Training Promotes Locomotor Muscle Strength but Not Mitochondrial Adaptation in Patients with Severe Chronic Obstructive Pulmonary Disease. Front Physiol, 8, 114. doi:10.3389/fphys.2017.00114
Mador, M. J., Bozkanat, E., Aggarwal, A., Shaffer, M., & Kufel, T. J. (2004). Endurance and strength training in patients with COPD. CHEST, 125(6), 2036-2045. doi:10.1378/chest.125.6.2036
Maltais, F., Decramer, M., Casaburi, R., Barreiro, E., Burelle, Y., Debigaré, R., . . . Wagner, P. D. (2014). An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 189(9), e15-62. doi:10.1164/rccm.201402-0373ST
Mancini, D. M., Henson, D., LaManca, J., & Levine, S. (1992). Respiratory muscle function and dyspnea in patients with chronic congestive heart failure. Circulation, 86(3), 909-918. doi:10.1161/01.cir.86.3.909
Marillier, M., Bernard, A. C., Verges, S., & Neder, J. A. (2021). The role of peripheral muscle fatigability on exercise intolerance in COPD. Expert Rev Respir Med, 15(1), 117-129. doi:10.1080/17476348.2021.1836964
McCoy, J., Bates, M., Eggett, C., Siervo, M., Cassidy, S., Newman, J., . . . Jakovljevic, D. (2017). Pathophysiology of exercise intolerance in chronic diseases: The role of diminished cardiac performance in mitochondrial and heart failure patients. Open Heart, 4, e000632. doi:10.1136/openhrt-2017-000632
McNeill, C., Beaven, C. M., McMaster, D. T., & Gill, N. (2019). Eccentric Training Interventions and Team Sport Athletes. Journal of Functional Morphology and Kinesiology, 4(4), 67. Retrieved from https://www.mdpi.com/2411-5142/4/4/67
Methenitis, S. (2018). A Brief Review on Concurrent Training: From Laboratory to the Field. Sports (Basel, Switzerland), 6(4), 127. doi:10.3390/sports6040127
Methenitis, S. (2018). A Brief Review on Concurrent Training: From Laboratory to the Field. Sports (Basel, Switzerland), 6(4). doi:10.3390/sports6040127
Meyer, K., Steiner, R., Lastayo, P., Lippuner, K., Allemann, Y., Eberli, F., . . . Hoppeler, H. (2003). Eccentric exercise in coronary patients: central hemodynamic and metabolic responses. Medicine & Science in Sports & Exercise, 35(7), 1076-1082. doi:10.1249/01.mss.0000074580.79648.9d
Miles, M. P., & Clarkson, P. M. (1994). Exercise-induced muscle pain, soreness, and cramps. J Sports Med Phys Fitness, 34(3), 203-216.
Nickel, R., Troncoso, F., Flores, O., Gonzalez-Bartholin, R., Mackay, K., Diaz, O., . . . Peñailillo, L. (2020). Physiological response to eccentric and concentric cycling in patients with chronic obstructive pulmonary disease. Appl Physiol Nutr Metab, 45(11), 1232-1237. doi:10.1139/apnm-2020-0149
Nishikawa, K. (2016). Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. J Exp Biol, 219(Pt 2), 189-196. doi:10.1242/jeb.124057
Nishikawa, K. C., Monroy, J. A., Powers, K. L., Gilmore, L. A., Uyeno, T. A., & Lindstedt, S. L. (2013). A molecular basis for intrinsic muscle properties: implications for motor control. Adv Exp Med Biol, 782, 111-125. doi:10.1007/978-1-4614-5465-6_6
Nishikawa, K. C., Monroy, J. A., Uyeno, T. E., Yeo, S. H., Pai, D. K., & Lindstedt, S. L. (2012). Is titin a 'winding filament'? A new twist on muscle contraction. Proceedings. Biological sciences, 279(1730), 981-990. doi:10.1098/rspb.2011.1304
Nystoriak, M. A., & Bhatnagar, A. (2018). Cardiovascular Effects and Benefits of Exercise. Frontiers in cardiovascular medicine, 5, 135-135. doi:10.3389/fcvm.2018.00135
O'Keeffe, S. T., Lye, M., Donnellan, C., & Carmichael, D. N. (1998). Reproducibility and responsiveness of quality of life assessment and six minute walk test in elderly heart failure patients. Heart (British Cardiac Society), 80(4), 377-382. doi:10.1136/hrt.80.4.377
Obokata, M., Olson, T. P., Reddy, Y. N. V., Melenovsky, V., Kane, G. C., & Borlaug, B. A. (2018). Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J, 39(30), 2810-2821. doi:10.1093/eurheartj/ehy268
Okonko, D. O., Grzeslo, A., Witkowski, T., Mandal, A. K., Slater, R. M., Roughton, M., . . . Ponikowski, P. (2008). Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol, 51(2), 103-112. doi:10.1016/j.jacc.2007.09.036
Oliveira, M. F., Arbex, F. F., Alencar, M. C., Souza, A., Sperandio, P. A., Medeiros, W. M., . . . Neder, J. A. (2016). Heart Failure Impairs Muscle Blood Flow and Endurance Exercise Tolerance in COPD. Copd, 13(4), 407-415. doi:10.3109/15412555.2015.1117435
Olson, T. P., Johnson, B. D., & Borlaug, B. A. (2016). Impaired Pulmonary Diffusion in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail, 4(6), 490-498. doi:10.1016/j.jchf.2016.03.001
Olsson, L. G., Swedberg, K., Clark, A. L., Witte, K. K., & Cleland, J. G. (2005). Six minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J, 26(8), 778-793. doi:10.1093/eurheartj/ehi162
Olsson, L. G., Swedberg, K., Clark, A. L., Witte, K. K., & Cleland, J. G. F. (2005). Six minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. European Heart Journal, 26(8), 778-793. doi:10.1093/eurheartj/ehi162
Ortega, F., Toral, J., Cejudo, P., Villagomez, R., Sánchez, H., Castillo, J., & Montemayor, T. (2002). Comparison of effects of strength and endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 166(5), 669-674. doi:10.1164/rccm.2107081
Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol (1985), 86(5), 1527-1533. doi:10.1152/jappl.1999.86.5.1527
Pageaux, B., Delphine, B., Casillas, J.-M., Lepers, R., Gremeaux, V., Ornetti, P., . . . Laroche, D. (2019). Progressively increasing the intensity of eccentric cycling over four training sessions: A feasibility study in coronary heart disease patients. Annals of Physical and Rehabilitation Medicine, 63. doi:10.1016/j.rehab.2019.09.007
Papasavvas, T., Alhashemi, M., & Micklewright, D. (2017). Association Between Depressive Symptoms and Exercise Capacity in Patients With Heart Disease: A META-ANALYSIS. J Cardiopulm Rehabil Prev, 37(4), 239-249. doi:10.1097/hcr.0000000000000193
Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Panayiotou, G., Fatouros, I. G., Koutedakis, Y., & Jamurtas, A. Z. (2011). A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med Sci Sports Exerc, 43(1), 64-73. doi:10.1249/MSS.0b013e3181e91d90
Philp, A., Hamilton, D. L., & Baar, K. (2011). Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985), 110(2), 561-568. doi:10.1152/japplphysiol.00941.2010
Piña, I. L., Apstein, C. S., Balady, G. J., Belardinelli, R., Chaitman, B. R., Duscha, B. D., . . . Sullivan, M. J. (2003). Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation, 107(8), 1210-1225. doi:10.1161/01.cir.0000055013.92097.40
Porto, E. F., Castro, A. A., Schmidt, V. G., Rabelo, H. M., Kümpel, C., Nascimento, O. A., & Jardim, J. R. (2015). Postural control in chronic obstructive pulmonary disease: a systematic review. Int J Chron Obstruct Pulmon Dis, 10, 1233-1239. doi:10.2147/copd.S63955
Radzewitz, A., Miche, E., Herrmann, G., Nowak, M., Montanus, U., Adam, U., . . . Barth, M. (2002). Exercise and muscle strength training and their effect on quality of life in patients with chronic heart failure. Eur J Heart Fail, 4(5), 627-634. doi:10.1016/s1388-9842(02)00090-9
Rassier, D. E., Leite, F. S., Nocella, M., Cornachione, A. S., Colombini, B., & Bagni, M. A. (2015). Non-crossbridge forces in activated striated muscles: a titin dependent mechanism of regulation? J Muscle Res Cell Motil, 36(1), 37-45. doi:10.1007/s10974-014-9397-6
Reeves, N. D., Maganaris, C. N., Longo, S., & Narici, M. V. (2009). Differential adaptations to eccentric versus conventional resistance training in older humans. Exp Physiol, 94(7), 825-833. doi:10.1113/expphysiol.2009.046599
Richardson, T. E., Kindig, C. A., Musch, T. I., & Poole, D. C. (2003). Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions. J Appl Physiol (1985), 95(3), 1055-1062. doi:10.1152/japplphysiol.00308.2003
Rocha, A., Arbex, F. F., Sperandio, P. A., Mancuso, F., Marillier, M., Bernard, A. C., . . . Neder, J. A. (2019). Exercise intolerance in comorbid COPD and heart failure: the role of impaired aerobic function. Eur Respir J, 53(4). doi:10.1183/13993003.02386-2018
Rocha Vieira, D. S., Baril, J., Richard, R., Perrault, H., Bourbeau, J., & Taivassalo, T. (2011). Eccentric cycle exercise in severe COPD: Feasibility of application. COPD: Journal of Chronic Obstructive Pulmonary Disease, 8(4), 270-274. doi:10.3109/15412555.2011.579926
Rooyackers, J. M., Berkeljon, D. A., & Folgering, H. T. (2003). Eccentric exercise training in patients with chronic obstructive pulmonary disease. Int J Rehabil Res, 26(1), 47-49. doi:10.1097/00004356-200303000-00006
RoyChoudhury, A., Dam, T. T., Varadhan, R., Xue, Q. L., & Fried, L. P. (2014). Analyzing feed-forward loop relationship in aging phenotypes: physical activity and physical performance. Mech Ageing Dev, 141-142, 5-11. doi:10.1016/j.mad.2014.08.001
Sato, T., Yoshihisa, A., Kanno, Y., Suzuki, S., Yamaki, T., Sugimoto, K., . . . Takeishi, Y. (2017). Cardiopulmonary exercise testing as prognostic indicators: Comparisons among heart failure patients with reduced, mid-range and preserved ejection fraction. Eur J Prev Cardiol, 24(18), 1979-1987. doi:10.1177/2047487317739079
Seymour, J. M., Spruit, M. A., Hopkinson, N. S., Natanek, S. A., Man, W. D., Jackson, A., . . . Wouters, E. F. (2010). The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J, 36(1), 81-88. doi:10.1183/09031936.00104909
Silva, R. F., Cadore, E. L., Kothe, G., Guedes, M., Alberton, C. L., Pinto, S. S., . . . Kruel, L. F. (2012). Concurrent training with different aerobic exercises. Int J Sports Med, 33(8), 627-634. doi:10.1055/s-0031-1299698
Stauber, W. T. (1989). Eccentric action of muscles: physiology, injury, and adaptation. Exerc Sport Sci Rev, 17, 157-185.
Steiner, R., Meyer, K., Lippuner, K., Schmid, J. P., Saner, H., & Hoppeler, H. (2004). Eccentric endurance training in subjects with coronary artery disease: a novel exercise paradigm in cardiac rehabilitation? Eur J Appl Physiol, 91(5-6), 572-578. doi:10.1007/s00421-003-1000-6
Sullivan, M. J., Knight, J. D., Higginbotham, M. B., & Cobb, F. R. (1989). Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation, 80(4), 769-781. doi:10.1161/01.cir.80.4.769
Tang, J. E., Hartman, J. W., & Phillips, S. M. (2006). Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Physiol Nutr Metab, 31(5), 495-501. doi:10.1139/h06-026
Temel, J. S., Greer, J. A., Goldberg, S., Vogel, P. D., Sullivan, M., Pirl, W. F., . . . Smith, M. R. (2009). A structured exercise program for patients with advanced non-small cell lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 4(5), 595-601. doi:10.1097/JTO.0b013e31819d18e5
Terzis, G., Spengos, K., Methenitis, S., Aagaard, P., Karandreas, N., & Bogdanis, G. (2016). Early phase interference between low-intensity running and power training in moderately trained females. Eur J Appl Physiol, 116(5), 1063-1073. doi:10.1007/s00421-016-3369-z
Theodorou, A. A., Panayiotou, G., Paschalis, V., Nikolaidis, M. G., Kyparos, A., Mademli, L., . . . Vrabas, I. S. (2013). Stair descending exercise increases muscle strength in elderly males with chronic heart failure. BMC research notes, 6, 87-87. doi:10.1186/1756-0500-6-87
Thomas, S. A., Chapa, D. W., Friedmann, E., Durden, C., Ross, A., Lee, M. C., & Lee, H. J. (2008). Depression in patients with heart failure: prevalence, pathophysiological mechanisms, and treatment. Crit Care Nurse, 28(2), 40-55.
Thorpe, O., Johnston, K., & Kumar, S. (2012). Barriers and Enablers to Physical Activity Participation in Patients With COPD: A SYSTEMATIC REVIEW. Journal of Cardiopulmonary Rehabilitation and Prevention, 32(6). Retrieved from https://journals.lww.com/jcrjournal/Fulltext/2012/11000/Barriers_and_Enablers_to_Physical_Activity.3.aspx
Thorpe, O., Kumar, S., & Johnston, K. (2014). Barriers to and enablers of physical activity in patients with COPD following a hospital admission: a qualitative study. Int J Chron Obstruct Pulmon Dis, 9, 115-128. doi:10.2147/copd.S54457
Tian, D., & Meng, J. (2019). Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxidative Medicine and Cellular Longevity, 2019, 3756750. doi:10.1155/2019/3756750
Tierney, S., Elwers, H., Sange, C., Mamas, M., Rutter, M. K., Gibson, M., . . . Deaton, C. (2011). What influences physical activity in people with heart failure?: a qualitative study. Int J Nurs Stud, 48(10), 1234-1243. doi:10.1016/j.ijnurstu.2011.03.003
Tsitkanou, S., Spengos, K., Stasinaki, A. N., Zaras, N., Bogdanis, G., Papadimas, G., & Terzis, G. (2017). Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand J Med Sci Sports, 27(11), 1317-1327. doi:10.1111/sms.12751
Tucker, W. J., Haykowsky, M. J., Seo, Y., Stehling, E., & Forman, D. E. (2018). Impaired Exercise Tolerance in Heart Failure: Role of Skeletal Muscle Morphology and Function. Curr Heart Fail Rep, 15(6), 323-331. doi:10.1007/s11897-018-0408-6
Tyrrell, T., Pavlock, J., Bramwell, S., Cortis, C., Doberstein, S. T., Fusco, A., . . . Foster, C. (2021). Functional Translation of Exercise Responses from Exercise Testing to Exercise Training: The Test of a Model. J Funct Morphol Kinesiol, 6(3). doi:10.3390/jfmk6030066
Vitale, G., Sarullo, S., Vassallo, L., Di Franco, A., Mandalà, G., Marazia, S., . . . Sarullo, F. M. (2018). Prognostic Value of the 6-Min Walk Test After Open-Heart Valve Surgery: EXPERIENCE OF A CARDIOVASCULAR REHABILITATION PROGRAM. J Cardiopulm Rehabil Prev, 38(5), 304-308. doi:10.1097/hcr.0000000000000340
Vogt, M., & Hoppeler, H. H. (2014). Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. Journal of Applied Physiology, 116(11), 1446-1454. doi:10.1152/japplphysiol.00146.2013
Walcott, S., & Herzog, W. (2008). Modeling residual force enhancement with generic cross-bridge models. Math Biosci, 216(2), 172-186. doi:10.1016/j.mbs.2008.10.005
Ward, T. J. C., Lindley, M. R., Ferguson, R. A., Constantin, D., Singh, S. J., Bolton, C. E., . . . Steiner, M. C. (2021). Submaximal Eccentric Cycling in People With COPD: Acute Whole-Body Cardiopulmonary and Muscle Metabolic Responses. CHEST, 159(2), 564-574. doi:10.1016/j.chest.2020.08.2082
Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The Journal of physiology, 586(15), 3701-3717. doi:10.1113/jphysiol.2008.153916
Wilson, J. M., Marin, P. J., Rhea, M. R., Wilson, S. M., Loenneke, J. P., & Anderson, J. C. (2012). Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res, 26(8), 2293-2307. doi:10.1519/JSC.0b013e31823a3e2d
Woodruffe, S., Neubeck, L., Clark, R. A., Gray, K., Ferry, C., Finan, J., . . . Briffa, T. G. (2015). Australian Cardiovascular Health and Rehabilitation Association (ACRA) Core Components of Cardiovascular Disease Secondary Prevention and Cardiac Rehabilitation 2014. Heart, Lung and Circulation, 24(5), 430-441. doi:https://doi.org/10.1016/j.hlc.2014.12.008
Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., Colvin, M. M., . . . Westlake, C. (2017). 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation, 136(6), e137-e161. doi:10.1161/cir.0000000000000509
Yao, W. X., Jiang, Z., Li, J., Jiang, C., Franlin, C. G., Lancaster, J. L., . . . Yue, G. H. (2016). Brain Functional Connectivity Is Different during Voluntary Concentric and Eccentric Muscle Contraction. Front Physiol, 7, 521. doi:10.3389/fphys.2016.00521
Yao, W. X., Li, J., Jiang, Z., Gao, J.-H., Franklin, C. G., Huang, Y., . . . Yue, G. H. (2014). Aging interferes central control mechanism for eccentric muscle contraction. Frontiers in Aging Neuroscience, 6(86). doi:10.3389/fnagi.2014.00086
Zhao, D., Abbasi, A., Casaburi, R., Adami, A., Tiller, N. B., Yuan, W., . . . Rossiter, H. B. (2021). Identifying a Heart Rate Recovery Criterion After a 6-Minute Walk Test in COPD. Int J Chron Obstruct Pulmon Dis, 16, 2545-2560. doi:10.2147/copd.S311572
Zheng, X., Zheng, Y., Ma, J., Zhang, M., Zhang, Y., Liu, X., . . . Yu, B. (2019). Effect of exercise-based cardiac rehabilitation on anxiety and depression in patients with myocardial infarction: A systematic review and meta-analysis. Heart Lung, 48(1), 1-7. doi:10.1016/j.hrtlng.2018.09.011
Zizola, C., & Schulze, P. C. (2013). Metabolic and structural impairment of skeletal muscle in heart failure. Heart failure reviews, 18(5), 623-630. doi:10.1007/s10741-012-9353-8
Zoll, J., Steiner, R., Meyer, K., Vogt, M., Hoppeler, H., & Flück, M. (2006). Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol, 96(4), 413-422. doi:10.1007/s00421-005-0082-8