| 研究生: |
陳省逸 Chen, Sheng-Yi |
|---|---|
| 論文名稱: |
具有金屬薄膜修飾結構之氮化鎵系發光二極體之研製 Fabrication of GaN-Based Light-Emitting Diodes with Decorated Metal Thin Film Structures |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、電流散佈 、透明導電層 、金屬薄膜 、氧化鋁鋅 、奈米柱 |
| 外文關鍵詞: | GaN, light-emitting diodes, current-spreading, transparent conductive layer, metal thin film, AZO, nanorods |
| 相關次數: | 點閱:220 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究論文中,為了改善氮化鎵系發光二極體之電流散佈能力(current spreading ability)與光取出效率(light extraction efficiency),吾人成功研製具有金屬薄膜修飾結構之氮化鎵系發光二極體。分別提出了元件製程技術與奈米材料應用,其中包含複合式鋁金屬薄膜/氧化鋁鋅透明導電層、一維條紋狀銀金屬導電薄膜以及複合式氧化鋅奈米結構與一維條紋狀銀金屬導電薄膜之結構,有效改善氮化鎵系發光二極體的光電特性,提升氮化鎵系發光二極體之性能與可靠度。本文對氮化鎵系發光二極體之光電特性與電流散佈能力,以及透明導電層與金屬薄膜結構之製程皆有深入之研究與探討。
首先吾人研製鋁金屬薄膜沉積於氧化鋁鋅透明導電層表面之氮化鎵系發光二極體,同時改善發光二極體元件的電流擁擠效應(current crowding effect)與導通電壓過高的缺點。具有高導電率之鋁金屬薄膜可有效改善電流擁擠效應,增加電流散佈能力,大幅增加電流分佈之面積,使得電流不會只侷限在電極附近,進而提升光輸出功率18.6%。不僅如此,複合式鋁金屬薄膜/氧化鋁鋅透明導電層之氮化鎵系發光二極體亦能有效降低特徵接觸電阻,根據傳輸線模型(transmission line model, TLM)量測,此研發元件之特徵電阻值降低至8.4 x 10-4 Ω-cm2,導通電壓降低0.3伏特 。
其次,探討一維條紋狀銀金屬導電薄膜之氮化鎵系發光二極體,藉由條紋狀銀金屬導電薄膜增加電流散佈的能力並減少光被半透明的銀金屬導電薄膜所吸收。雖然此研發元件之光輸出功率僅提升約5%,但元件導通電壓大幅降低0.6伏特。不僅如此,相較於傳統氮化鎵系發光二極體,此研發元件在電流對光輸出功率之關係圖中,電流飽和點右移約150毫安培,這是因為一維條紋狀銀金屬導電薄膜能有效減緩電流擁擠效應以及焦耳熱效應(Joule heating effect),使電流不會只侷限在元件之電極附近,因而讓元件對溫度的影響減弱,可有效改善光電轉換效率以及降低消耗功率。
最後,探討成長氧化鋅奈米結構與一維條紋狀銀金屬導電薄膜之氮化鎵系發光二極體,改善第三章中一維條紋狀銀金屬導電薄膜穿透率過低的問題,藉由氧化鋅奈米結構降低內部全反射之效應,將由主動區發散之光重新導正向上,並增加光散射至元件之外的機會,提升光輸出功率與外部量子效率達15.1%以及10.0%。本研究論文所研製的具有金屬薄膜修飾結構之氮化鎵系發光二極體,皆可有效提升光電轉換效率以及降低消耗功率,可用於實際上的應用。
In this dissertation, for purposes of improving the current spreading ability and light extraction efficiency (LEE), GaN-based light-emitting diodes (LEDs) with decorated metal thin film structures were fabricated and studied. The device fabrication processes and nanomaterials applications, including a hybrid Al metal thin film/AZO transparent conductive layer, an one-dimension (1-D) stripe Ag metal thin film, hybrid ZnO nanostructure and stripe Ag metal thin film, were introduced to improve wall-plug efficiency (WPE) of GaN-based LEDs. Therefore, enhanced performance and reliability of GaN-based LEDs could be obtained. In addition, optical properties and current spreading ability of the GaN-based LEDs were studied and discussed. The fabrication processes of transparent contact layer (TCL) and metal thin film structures are also discussed in detail.
First, GaN-based LEDs with a high-current spreading ability based on a hybrid Al metal thin film/AZO transparent conductive layer was fabricated and studied. The use of a hybrid Al metal thin film structures improve the current crowding effect and high forward voltage problem. A hybrid Al metal thin film structures substantially increases the current distribution area rather than the current crowding near the electrodes. As compared with conventional GaN-based LEDs at 20 mA, the studied device exhibits a 18.6% improvement in light output power. In addition, GaN-based LEDs with a high-current spreading ability based on a hybrid Al metal thin film/AZO transparent conductive layer could efficiently reduce specific contact resistance. According to transmission line model measurement, the specific contact resistance of the studied device is reduced to 8.4 x 10-4 Ω-cm2. As compared with conventional GaN-based LEDs at 20 mA, the studied device can reduce 0.3 V.
Second, an one-dimension (1-D) stripe Ag metal thin film was successfully fabricated. A stripe Ag metal thin film could efficiently enhance current spreading ability and reduce the absorption of photos by semi-transparent only Ag metal thin film. Although the studied device only 5% improvement in light output power, the forward voltage of device substantially reduced 0.6 V. In addition, As DC forward current is increased from 10 to 100 mA, the increased junction temperature also reduced from 53.3 to 3.3oC of the studied device. The saturation point of the light output power increased from 350 to 500 mA. It is attributed to an 1-D stripe Ag metal thin film could effectively abate current crowding effect and joule heating effect. Due to the current distribution more uniform, the performances and power consumption of GaN-based LEDs are significantly improved.
Finally, GaN-based LEDs with a hybrid ZnO nanostructures and stripe Ag metal thin film is fabricated and studied. A stripe Ag metal thin film was used to enhance current spreading ability and abate thermal effect. The forward voltage was reduced from 3.54 to 3.12 V of studied devices. The use of ZnO nanorods effectively reflect photons and redirect the light path rather than total internal reflection effect. As compared with conventional GaN-based LEDs at 20 mA, studied device exhibits 15.1% (14.9%) improvements in light output power as well as EQE. Optical and electrical properties could be improved by the employment of a hybrid ZnO nanostructure and stripe Ag metal thin film. Moreover, due to the lattice constant approximation of AZO and ZnO, ZnO nanordos could directly grow in the AZO surface by low-temperature hydrothermal. It is a low cost and simple process for GaN-based LEDs.
In conclusion, all of these specific approaches in this dissertation could effectively improve performances and power consumption of GaN-based LEDs. Thus, GaN-based LEDs have high potential actual applications.
1. A. Despic and V. P. Parkhutik, “Electrochemistry of aluminum in aqueous solution and physics of its anodic oxide,” Morden aspects of slectrochemistry, vol. 23, Ch. 6, pp. 401, 1989.
2. H. Masuda and K. Fukuda,“Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina,”Science, New Series, vol. 268, pp. 1466-1468, 1995.
3. J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chem Rev., vol. 69, pp.365-405, 1969.
4. G. E. Thompson and G. C. Wood, “Anodic films on aluminium,” Aqueous Process and Passive Films, vol. 23, Ch. 5, pp. 205-329, 1983.
5. S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of aluminum,” The surface treatment finishing of aluminium and its alloys, vol. 1, Ch. 6, pp. 289, 1987.
6. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” vol. 268, pp. 1466-1468, 1995.
7. Y. Lei and K. S. Yeong, “Large-scale ordered carbon nanotube arrays initiated from highly ordered catalyst arrays on silicon substrate,” Chem. Mater., vol. 16, pp. 2757-2761, 2004.
8. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 321-332, 2002.
9. D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Proc., vol. 85, pp. 1752-1764, 1997.
10. T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Technol. Lett., vol. 18, pp. 1876–1878, Sep. 2006.
11. T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Tech. Lett., vol. 18, pp. 1876–1878, Sep. 2006.
12. X. Y. Sun, R. Bommerna, D. Burckel, A. Frauenglass, N. Fairchild, S. R. J. Bryeck, G. A. Garrett, M. Wraback, and S. D. Hersee, “Defect reduction mechanisms in the nanoheteroexpitaxy of GaN on SiC,” J. Appl. Phys., vol. 95, pp. 1450-1454, 2004.
13. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal lighting emitting diode,” Appl. Phys. Lett., vol. 84, pp. 466-468, 2004.
14. C. Y. Lee, M. C. Wu, Y. D. Tian, W. H. Wang, W. J. Ho, and T. T. Shi, “Effects of rapid thermal annealing on InAsP/InP strained multiquantum well laser diodes grown by metal organic chemical vapor deposition,” Electron. Lett., vol. 36, pp.1026 -1028, 2000.
15. C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
16. J. I. Chyi, “MBE growth and characterization of InGaAs quantum dot lasers,” Mater. Sci. Technol B, vol. 75, pp. 121-125, 2000. “30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Letters., vol.25, pp.117-119, 2004.
17. B. M. Green, Sch. of Electr & Comput,Eng, Cornell Univ, Ithaca, NY, USA K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “ The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Letters., vol.21, pp. 268 - 270, 2000.
18. S. C. Binari, Naval Res. Lab, K. Ikossi, J. A. Roussos, W. Kruppa, Doewon Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “ trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol.48, pp. 465 - 471, 2001.
19. H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor‐deposited single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, pp. 367-369, 1969.
20. H. P. Maruska, D. A. Stevenson, and J. I. Pankov, “Violet luminescence of Mg-doped GaN,” Appl. Phys. Lett., vol. 22, pp.1003-1006, 1973.
21. M. Ilegems and R. Dingle, “Luminescence of Be‐ and Mg‐doped GaN,” Journal of Appl. Phys., vol. 44, pp.4234-4235, 1973.
22. H. P. Maruska, D. A. Stevenson, and J. I. Pankov, “Mechanism of light production in metal-insulator-semiconductor diodes; GaN:Mg violet light-emitting diodes,” Solid-State Electron., vol. 17, pp.1171-1179, 1974.
23. S. Yoshida, S. Misawa, S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates,” Appl. Phy. Lett., vol. 42, pp.427-429, 1983.
24. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
25. S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
26. S. Nakamura, T. Mukai and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers,” Jpn. J. Appl. Phys., vol. 71, pp. 5543-5549, 1992.
27. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
28. S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
29. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
30. J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: Novel Aspects of a Common Impurity,” Phys. Rev. Lett., vol. 75, pp. 4452-4455, 1995.
31. J. Neugebauer and C. G. Van de Walle, “Role of hydrogen in doping of GaN,” Appl. Phy. Lett., vol. 68, pp. 1829-1831, 1996.
32. J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “electroluminescence in GaN,” J. Luminescence., vol. 4, pp. 63-66, 1971.
33. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 30, pp. L1998-L2001, 1991.
34. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8-L11, 1993.
35. S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys., vol. 64, pp. 1687-1689, 1994.
36. N. S. Shinbun, “p-n junction DH blue LEDs with a brightness of more than 1000 mcd were developed by Nichia Chemical Industries Ltd,” Japanese newspaper press release, Nov. 30, 1993.
37. S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995.
38. S. Nakamura and G. Fasol, “The blue laser diode,” Germany: Springer-Verlag, Berlin, pp. 216-219, 1997
39. S. Nakamura and C. R. Krames, “History of gallium–nitride-based light-emitting diodes for illumination,” Proc. IEEE, vol. 101, pp.2211-2220, 2013.
40. Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Chen, T. H. Tsai, and W. C. Liu “Characteristics of a GaN-Based light-Emitting diode with an inserted p-GaN/i-InGaN superlattice structure,” IEEE Journal of Quantum Electron., vol. 46, pp. 492-498, 2010.
41. S. Nakamura, M. Kito, K. Hiramatsu, and I.Akasaki, “Reducing reverse-bias current in 450°C-annealed n+p junction by hydrogen radical sintering,” Jan. J. Appl. Phys., vol. 34, pp. L796-L797, 1995.
42. S. Nakamura, T. Mukai, and M. Senoh, “III-nitride blue microdisplays,” Appl. Phys. Lett., vol. 64, pp. 1687-1690, 1994.
43. H. X. Jiang, S. X. Jin, J. Li, J. Shakya and J. Y. Lin “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 1303, 2001.
44. Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) backside reflector,” IEEE J. Quantum Electron., vol. 34, pp. 777 - 779, 2013.
45. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert and R. F. Karlicek Jr, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures,” Appl. Phys. Lett, vol. 70, pp. 2790-2792, 1997.
46. C. J. Tuna, J. K. Sheub,z, M. L. Leec, C. C. Hud, C. K. Hsiehd and G. C. Chid “Effects of thermal annealing on Al-doped ZnO films deposited on p-Type gallium nitride,” Electrochem., vol. 153, pp. G296-G298, 2006.
47. H. Gao, F. Yan, J. Li, Y. Zeng, and J. Wang, “Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method,” J. Phys. D: Appl. Phys., vol. 40, pp. 3654-3659, 2007.
48. T. Y. Ma and D. K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films,” Thin Solid Films., vol. 410, pp. 8-13, 2002.
49. C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu and G. C. Chia, “Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer,” Electrochemical and Solid-State Letters., vol. 11, pp. H269-H271, 2008.
50. C. F. Tsai, Y. K. Su, C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Tech. Lett., vol. 21, pp. 996-998, 2009.
51. H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, and H. K. Kim, “Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics,” Solar Energy Materials and Solar Cells., vol. 93, pp. 1994-2002, 2009.
52. Y. S. Lin and W. C. Tseng, “Effect of Al nanoparticles on the microstructure, electrical, and optical properties of AZO/Al/AZO trilayer thin film,” Journal of Electronic Materials., vol. 41, pp. 437-441, 2012.
53. Y. Igasaki and H. Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates,” Appl. Surf. Sci., vol. 15, pp. 169–170, 2001.
54. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and Wen-Chau Liu “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE Journal of Quantum Electron., vol. 47, pp. 755 - 761, 2011.
55. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, ”Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer”, IEEE Photo. Tech. Lett., vol. 18, pp. 274-276, 2005.
56. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, ” Applications of transparent Al-doped ZnO contact on GaN-based power LED”, SPIE., vol. 6121, 2006.
57. J. K. Liou, C. C. Chen, P. C. Chou, S. Y. Cheng, J. H. Tsai, R. C. Liu , and W. C. Liu “Effects of the use of an aluminum reflecting and an SiO2 insulating layers (RIL) on the performance of a GaN-based light-emitting diode with the naturally textured p-GaN surface,” IEEE transactions on electron devices., vol. 60, pp. 2282-2289, 2013.
58. S. Nakamura, T. Mukai, and M. Senoh, “III-nitride blue microdisplays,” Appl. Phys. Lett., vol. 64, pp. 1687-1690, 1994.
59. C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photon. Tech. Lett., vol. 19, pp. 780-782, May. 2007.
60. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev,” Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes”, Appl. Phys. Lett., vol. 97, p. 251110, 2010.
61. S. Y Jung, J. H. Oh, and T. Y. Seong, ”Improved light output power of GaN-based light-emitting diodes by using Ag grids”, Microelectronic Engineering., vol. 95, pp. 10-13, 2012.
62. Y. L. Chou, R.M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, ” Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector”, IEEE Electron Device Lett., vol. 33, pp. 227-229, 2012.
63. N. C. Chen, C. M. Lin, Y. K. Yang, C. Shen, T. W. Wang, and M. C. Wu ” Measurement of junction temperature in a nitride light-emitting diode” , Jpn. J. Appl. Phys., vol. 47, pp. 8779-8782, 2008.
64. J. K. Liou, C. C. Chen, P. C. Chou, T. Y. Tsai, S. Y. Cheng, and W. C. Liu, “Improved current spreading performance of a GaN-based light-emitting diode with a stair-like ITO layer,” Solid-State Electron., vol. 99, pp. 21 - 24, 2014.
65. M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang, and B. J. Lee, “High reliability of AlGaInP LED's with efficient transparent contacts for spatially uniform light emission,” IEEE Electron Device Lett., vol. 16, pp. 482 - 484, 1995.
66. S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Optics Express., vol. 19, pp. 16244-16251, 2011.
67. Y. Xi and E. F. Schubert, ”Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phy, Lett., vol. 85, pp. 2163-2165, 2004.
68. M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, ” Status and future of high-power light-emitting diodes for solid-state lighting”, Journal of display tech., vol. 3, pp. 160 - 175, 2007.
69. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron., vol. 47, pp. 755-761, 2011.
70. J. K. Liou, Y. J. Liu, C. C. Chen, P. C. Chou, W. C. Hsu, and W. C. Liu, “On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface,” IEEE Electron Device Lett., vol. 33, pp. 227 - 229, 2012.
71. J. K. Liou, P. C. Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J. H. Tsai, and W. C. Liu, “Implementation of high-power GaN-based LEDs with a textured 3-D backside reflector formed by inserting a self-assembled SiO2 nanosphere monolayer,” IEEE Transactions on Electron., vol. 61, pp. 831 - 837, 2014.
72. J. K. Liou, C. C. Chen, P. C. Chou, Z. J. Tsai, Y. C. Chang, and W. C. Liu, “Implementation of a high-performance GaN-based light-emitting diode grown on a nanocomb-shaped patterned sapphire substrate,” IEEE J. Quantum Electron., vol. 50, pp. 930-980, 2014.
73. E. Ando and M. Miyazaki,“Moisture resistance of the low-emissivity coatings with a layer structure of Al-doped ZnO/Ag/Al-doped ZnO,” Thin Solid Films., vol. 2, pp. 289–293, 2001.
74. D. C. Kim, W. S. Han, B. H. Kong, H. K. Cho , and C. H. Hong,“Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition,” Condensed Matter., vol. 401-402, pp. 386–390, 2007.
75. J. J. Wu and S. C. Liu,“Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., vol. 14, pp. 215–218, 2002.
76. J. Lee, A. J. Easteal, U. Pal, and D. Bhattacharyya,“Evolution of ZnO nanostructures in sol–gel synthesis,” Current Applied Physics., vol. 9, pp. 792–796, 2008.
77. Y. C. Lin, T. Y. Chen, L. C. Wang and S. Y. Lien,“Comparison of AZO, GZO, and AGZO Thin Films TCOs Applied for a-Si Solar Cells,” Electro. Soc., vol. 159, pp. H599-H604, 2012.
78. H. K. Lee, D. H. Joo, Y. H. Ko, Y. Yeh, Y. P. Kim and J. S. Yu, “Improved light extraction of GaN-based blue light-emitting diodes with ZnO nanorods on transparent Ni/Al-doped ZnO current spreading layer,” J. Appl. Phys., vol. 51, pp. 446-701, 2012.
79. A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, “Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties,” Journal of Crystal Growth., vol. 282, pp. 1-2, 2005.