簡易檢索 / 詳目顯示

研究生: 楊顓銘
Yang, Chuan-Ming
論文名稱: 餐飲外送服務對臺灣機車事故空間型態之影響評估
Evaluating the Influence of Food Delivery Service on the Spatial Pattern of Motorcycle Accidents in Taiwan
指導教授: 林珮珺
Lin, Pei-Chun
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 100
中文關鍵詞: 機車事故外送平台空間自相關空間計量經濟模型動態追蹤資料模型
外文關鍵詞: Motorcycle accident, Food delivery service, Spatial autocorrelation, Spatial econometrics models, Dynamic panel model
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機車事故長年以來都是困擾著臺灣的重要交通課題,自2012至2020年間,機車A1
    及A2型事故總數由249,465件上升至324,604件,約增加30%,普通重型機車登記數量
    在同期間增長了約100萬輛,提升了道路環境之機車密度,此外,國內外機車外送平
    台藉助科技的進步自2012年開始投入臺灣市場,截至2020年營業額已超過100億臺幣
    的規模,大幅增加機車騎士的道路曝光量,亦時常在外送途中發生交通事故。
    本研究旨在探討機車事故件數與解釋變數的空間關聯性,並量化外送服務的興起
    對機車事故件數在空間特徵上的影響,本研究包含三個研究對象,全臺灣總機車事故
    件數、機車外送事故件數(FDMAs)以及非機車外送事故件數(NFDMAs),本研究首先
    檢驗機車事故在空間分布上是否有空間相依性,接著在考量時間序列的情況下其空間
    分布是否群聚,以動態追蹤資料模型檢測其群聚位置變動原因,並以橫斷面及縱斷面
    分析比較影響FDMAs與NFDMAs的解釋變數為何,同時測量FDMAs與NFDMAs之外
    溢效應是否顯著,最後比較造成FDMAs與NFDMAs空間特徵不同的原因。
    空間自相關結果顯示臺灣機車事故之空間型態為顯著的群聚分布,且臺南市的總
    機車事故群聚地點自2012至2019年發生明顯改變,動態追蹤資料模型證明臺南市8個
    行政區之機車事故件數亦具有時間相依性,當期事故件數顯著受前期機車事故件數以
    及住宿及餐飲業密度所影響,且皆為正相關。
    比較FDMAs和NFDMAs與解釋變數之橫斷面空間效應發現FDMAs被住宿及餐飲
    業密度所解釋,而NFDMAs則與住宿及餐飲業密度、3岔路口數量以及人口密度有顯
    著關連。追蹤資料分析FDMAs與解釋變數之空間及時間效應得知家戶數、住宿及餐
    飲業密度以及運輸倉儲業密度皆與FDMAs呈現顯著正相關,而NFDMAs則僅能夠被
    住宿及餐飲業密度所解釋。外溢效應分析在所有模型皆達到顯著水準,證明了影響一
    行政區事故件數之因素除了來自該行政區內部外,亦受鄰近地區所影響,FDMAs模
    型有顯著外溢效應可解釋為儘管餐飲外送服務存在服務距離限制,但仍然存在一些跨
    區活動,因此,一行政區的FDMAs可被其相鄰地區中的住宿及餐飲業密度所解釋。
    總結以上結果,考量空間效應之FDMAs模型、考量空間及時間效應之FDMAs模
    型以及考量空間及時間效應之NFDMAs模型,皆能夠被住宿及餐飲業密度所解釋,由
    此可知,住宿及餐飲業密度是影響台灣機車事故件數之關鍵因素,研究結果亦證明了
    FDMAs與NFDMAs兩機車事故類別之影響因素存在差異,後續研究應將機車外送事
    故獨立於機車事故進行探討。
    本研究對機車事故空間型態及原因進行分析,希望能提升機車騎士風險意識、提
    供保險公司區域定價差異化之參考,並對運輸規劃提出策略改善建議。

    Motorcycle accidents have been a major occurrence in Taiwan for a long time. From 2012 to 2020, the total number of Types A1 and A2 motorcycle accidents rose from 249,465 to 324,604 cases, with an increase of about 30 percent. Ownership of ordinary heavy motorcycles also increased by about 1 million during the same period and increased the density of motorcycles in the road environment. In addition, since 2012, many domestic and foreign delivery platform companies have successively engaged the food-delivery market in Taiwan with the development of online technology. As of 2020, the turnover exceeded 10 billion Taiwan dollars, which significantly increased the road exposure of motorcyclists and often resulted in road accidents. This study examines whether the emergence of food delivery services affect the overall distribution patterns or the cause of motorcycle accidents.
    First, we detect the spatial pattern of all motorcycle accidents, and implement the dynamic panel model for time series analysis to answer the research object 1. We then conduct cross-sectional analysis on the spatial pattern of food delivery motorcycle accidents (FDMAs) and non-food-delivery motorcycle accident (NFDMAs), which responds to the research object 2. Finally, we carry out the panel analysis on the spatial pattern of the FDMAs and the NFDMAs, thus exploring the research object 3.
    Results show that the spatial pattern of motorcycle accidents in Taiwan is a significant clustered distribution, and the pattern has changed in the city of Tainan from 2012 to 2019, which is significantly affected by the number of motorcycle accidents in the previous year and the hotel and restaurant density within districts. The results of cross-sectional analysis reveal that the population density and the number of 3-legged intersections is more related to the NFDMAs. The results of the panel analysis show that household density and the transportation and warehousing service density is more related to the FDMAs. The hotel and restaurant density can explain the spatial effect on the FDMAs model, the spatial and temporal effect on the FDMAs model, and the spatial and temporal effect on the NFDMAs models It can be seen that the hotel and restaurant density is a key factor to the number of motorcycle accidents in Taiwan.
    This study analyzes the spatial patterns and causes of motorcycle accidents, with aim to increase risk awareness of motorcyclists, provide insurance companies with a reference to differentiate their regional pricing, and propose strategic improvements in transportation planning.

    Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 6 1.3 Research Objective 7 1.4 Research Area 8 1.5 Research Framework 8 Chapter 2 Literature Review 10 2.1 Motorcycle Accident in Taiwan 10 2.2 Delivery Motorcyclist Accidents 12 2.3 Spatial Autocorrelation 14 2.4 Spatial Units for Spatial Analysis 15 2.5 Spatial Proximity Structures 17 2.6 Spatial Analysis on Traffic Accidents 20 Chapter 3 Methodology 23 3.1 Data Description 23 3.2 Spatial Proximity Structure 25 3.3 Spatial Autocorrelation Index 25 3.3.1 Global Moran's I 26 3.3.2 Local Moran's I 27 3.4 Temporal Autocorrelation 29 3.4.1 Fixed Effect & Random Effect 29 3.4.2 Dynamic Panel Model for Time Series Analysis 30 3.5 Spatial Econometric Models for Cross-Sectional Analysis 32 3.5.1 Ordinary Least Squares (OLS) Model 33 3.5.2 Spatial Lag Model (SLM) on Cross-Sectional Data 34 3.5.3 Spatial Lag of X Model (SLX) on Cross-Sectional Data 35 3.5.4 Spatial Durbin Model (SDM) on Cross-Sectional Data 36 3.5.5 Spatial Error Model (SEM) on Cross-Sectional Data 37 3.6 Spatial Econometric Models for Panel Analysis 38 3.6.1 Spatial Lag Model (SLM) on Panel Data 39 3.6.2 Spatial Lag of X Model (SLX) on Panel Data 40 3.6.3 Spatial Durbin Model (SDM) on Panel Data 42 3.6.4 Spatial Error Model (SEM) on Panel Data 43 3.7 Goodness of Fit Test 45 Chapter 4 Result 46 4.1 Spatial pattern of all motorcycle accidents 46 4.1.1 Spatial autocorrelation 47 4.1.2 Temporal autocorrelation 49 4.1.3 Temporal effect on all motorcycle accidents 51 4.2 Spatial pattern of FDMAs and NFDMAs 53 4.2.1 Spatial autocorrelation 55 4.2.2 Spatial effect on FDMAs 59 4.2.3 Spatial effect on NFDMAs 61 4.2.4 Spillover effect on FDMAs and NFDMAs 64 4.3 Spatial and temporal pattern of FDMAs and NFDMAs 66 4.3.1 Spatial Autocorrelation 68 4.3.2 Temporal effect 72 4.3.3 Spatial and Temporal effect on FDMAs 73 4.3.4 Spatial and Temporal effect on NFDMAs 75 4.3.5 Spillover effect on FDMAs and NFDMAs 77 Chapter 5 Conclusion 80 5.1 Conclusion 80 5.2 Contribution 84 5.3 Limitation 85 5.4 Future Research 86 Reference 88 Appendix A: Summary of spatial analyses on traffic accidents 93

    Briz-Redon, A., Martinez-Ruiz, F. & Montes, F. (2019). Spatial analysis of traffic accidents near and between road intersections in a directed linear network. Accident Analysis & Prevention, 132, 105252. doi:10.1016/j.aap.2019.07.028.
    Cai, Q., Lee, J., Eluru, N. & Abdel-Aty, M. (2016). Macro-level pedestrian and bicycle crash analysis: Incorporating spatial spillover effects in dual state count models. Accident Analysis & Prevention, 93, 14-22.
    Chang, Yi-Chung. (2019). Many catering companies rush into the delivery market.
    MoneyDJ. Retrieved from: https://www.moneydj.com/focus/Article/%E5%A4%96%E9%80%81%E5%B8%82
    %E5%A0%B4%E7%86%B1%20%E5%A4%9A%E5%AE%B6%E9%A4%90%E9
    %A3%B2%E6%A5%AD%E8%80%85%E6%90%B6%E9%80%B2-
    637044896022036280.
    Chang, H.-L. & Yeh, T.-H. (2007). Motorcyclist accident involvement by age, gender, and risky behaviors in Taipei, Taiwan. Transportation Research Part F: Traffic
    Psychology and Behaviour, 10(2), 109-122.
    Chang, H. L. & Lai, C. Y. (2015). Using travel socialization and underlying motivations to better understand motorcycle usage in Taiwan. Accident Analysis & Prevention, 79, 212-220.
    Chang, S.H., Chen, W.H., Chou, W.S., Wu, C.H., Chung, Y.S. (2015). Integration and
    Maintenance of Safety Education Training Platform for Motorcyclists and Drivers:
    Risk Perception Education Materials and Applications for Motorcyclists. Institute
    of Transportation, MOTC, 153-183. doi:
    http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/100447.
    Chang, Y.-H. (2017). Contemporary Transportation (4 Ed.): Hwa Tai Publishing CO., LTD.
    Chen, Chun-Hung. (2019). 29-year-old deliveryman died the second day of his new job. ETtoday. Retrieved from: https://www.ettoday.net/news/20191013/1555769.htm
    Chen, C. F. & Chen, C. W. (2011). Speeding for fun? Exploring the speeding behavior of riders of heavy motorcycles using the theory of planned behavior and psychological flow theory. Accident Analysis & Prevention, 43(3), 983-990.
    Chen, M.-C., Hsiao, Y.-S. & Huang, Y.-S. (2019). discussing about defensive driving from the delivery accidents. Forum of Taiwan Police College, 33, 45-54.
    Chen, P.-L., Chen, Y.-C. & Pai, C.-W. (2018). Motorcyclist Is the Right-of-Way Violator: A Population-Based Study of Motorcycle Right-of-Way Crash in Taiwan. Journal of Advanced Transportation, 2018, 1-7.
    Chen, P. L. & Pai, C. W. (2019). Evaluation of injuries sustained by motorcyclists in approach-turn crashes in Taiwan. Accident Analysis & Prevention, 124, 33-39.
    Chen, S. J., Chen, C. Y. & Lin, M. R. (2018). Risk factors for crash involvement in older motorcycle riders. Accident Analysis & Prevention, 111, 109-114.
    Chung, Y., Song, T. J. & Yoon, B. J. (2014). Injury severity in delivery-motorcycle to vehicle crashes in the Seoul metropolitan area. Accident Analysis & Prevention, 62, 79-86.
    da Silva, D. W., de Andrade, S. M., Soares, D. F., Mathias, T. A., Matsuo, T. & de Souza, R. K. (2012). Factors associated with road accidents among Brazilian motorcycle couriers. Scientific World Journal, 2012, 605480. doi:10.1100/2012/605480.
    Das, P. (2019). Econometrics in Theory and Practice. Singapore: Springer.
    Department of Statistics, Ministry of Economic Affairs (MOEA),Taiwan (2019). Annual turnover of wholesale, retail and catering industry.
    Department of Household Registration, Ministry of the Interior (MOI), Taiwan (2020). Statistical Map of the National Population Database. Retrieved from: https://gis.ris.gov.tw/.
    Directorate General of Highways, Ministry of Transportation and Communications (MOTC),Taiwan (2020). Number of motor vehicle registrations.
    E-ICP, Eastern Integrated Consumer Profile(E-ICP). (2020). Have you used the service of the delivery platform? from Eastern Online Co., Ltd.
    Elhorst, J. P. (2014). Spatial Econometrics From Cross-Sectional Data to Spatial Panels. New York: Springer.
    Erdogan, S. (2009). Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of Safety Research, 40(5), 341-351.
    Fan, H. P., Chiu, W. T. & Lin, M. R. (2019). Effects of helmet nonuse and seating position on patterns and severity of injuries in child motorcycle passengers. BMC Public Health, 19(1), 1070.
    Ferdosian, Z., Morowatisharifabad, M. A. & Rezaeipandari, H. (2015). Unlicensed motorcycling of high school adolescents in Dehaghan county (Isfahan Province of Iran). Accident Analysis & Prevention, 75, 211-216.
    Fotheringham, A.S., Brunsdon, C., Charlton, M., 2002. Geographically weighted regression. John Wiley & Sons, Limited, West Atrium, pp. 159–183.
    Gomes, M., Cunto, F. & da Silva, A. R. (2017). Geographically weighted negative binomial regression applied to zonal level safety performance models. Accident Analysis & Prevention, 106, 254-261.
    Hadayeghi, A., Shalaby, A. S. & Persaud, B. N. (2010). Development of planning level transportation safety tools using Geographically Weighted Poisson Regression Accident Analysis & Prevention, 42(2), 676-688.
    Hsu, T. P. & Wen, K. L. (2019). Effect of novel divergence markings on conflict prevention regarding motorcycle-involved right turn accidents of mixed traffic flow. Journal of Safety Research, 69, 167-176.
    Jia, R., Khadka, A. & Kim, I. (2018). Traffic crash analysis with point-of-interest spatial clustering. Accident Analysis & Prevention, 121, 223-230.
    Kieling, R. R., Szobot, C. M., Matte, B., Coelho, R. S., Kieling, C., Pechansky, F. & Rohde, L. A. (2011). Mental disorders and delivery motorcycle drivers (motoboys): a dangerous association. European Psychiatry, 26(1), 23-27.
    Kulanthayan, S., See, L. G., Kaviyarasu, Y. & Nor Afiah, M. Z. (2012). Prevalence and determinants of non-standard motorcycle safety helmets amongst food delivery workers in Selangor and Kuala Lumpur. Injury, 43(5), 653-659.
    Lam, C., Pai, C. W., Chuang, C. C., Yen, Y. C., Wu, C. C., Yu, S. H., Chiu, W. T. (2019). Rider factors associated with severe injury after a light motorcycle crash: A multicentre study in an emerging economy setting. PLoS One, 14(6), doi:10.1371/journal.pone.0219132.
    Lee, E. (2020). Delivery platform battle for hegemony! Uber Eats and foodpanda have launched killer skills, will the "subscription system" be the trump card? Medium. Retrieved from: https://medium.com/wishmobile/%E5%A4%96%E9%80%81%E5%B9%B3%E5%8F%B0%E7%88%AD%E9%9C%B8%E6%88%B0-uber-eats-foodpanda-%E7%B4%9B%E7%B4%9B%E6%8E%A8%E5%87%BA%E6%AE%BA%E6%89%8B%E9%90%A7-%E8%A8%82%E9%96%B1%E5%88%B6-%E6%9C%83%E6%98%AF%E6%B1%BA%E5%8B%9D%E9%BB%9E%E7%9A%84%E7%8E%8B%E7%89%8C-%E4%B8%8A-aeb15afd9e25.
    Lee, J., Abdel-Aty, M. & Cai, Q. (2017). Intersection crash prediction modeling with macro-level data from various geographic units. Accident Analysis & Prevention, 102, 213-226.
    Lee, J., Abdel-Aty, M. & Jiang, X. (2014). Development of zone system for macro-level traffic safety analysis. Journal of Transport Geography, 38, 13-21.
    Li, M. D., Doong, J. L., Huang, W. S., Lai, C. H. & Jeng, M. C. (2009). Survival hazards of road environment factors between motor-vehicles and motorcycles. Accident Analysis & Prevention, 41(5), 938-947.
    Lin, M.-R., Chang, S.-H., Pai, L. & Keyl, P. M. (2003). A longitudinal study of risk factors for motorcycle crashes among junior college students in Taiwan. Accident Analysis & Prevention, 35(2), 243-252.
    Lin, M. R. & Kraus, J. F. (2008). Methodological issues in motorcycle injury epidemiology. Accident Analysis & Prevention, 40(5), 1653-1660.
    Lin, M. R. & Kraus, J. F. (2009). A review of risk factors and patterns of motorcycle injuries. Accident Analysis & Prevention, 41(4), 710-722.
    Loonis, V. (2018). HANDBOOK OF SPATIAL ANALYSIS. Paris: INSEE Eurostat.
    Montella, A. (2010). A comparative analysis of hotspot identification methods. Accident Analysis & Prevention, 42(2), 571-581.
    National Geographic Magazine. (2018). National Geographic Travel Photographer of the Year.
    National Land Surveying and Mapping Center, Ministry of the Interior (MOI), Taiwan (2021). Land use survey results. Retrieved from: https://www.nlsc.gov.tw/.
    National Police Agency, Ministry of the Interior (MOTI), Taiwan (2020). Historical traffic accident data.
    osmnx, python API, OpenStreetMap (2020). Retrieved from: https://pypi.org/project/osmnx/.
    Pirdavani, A., Bellemans, T., Brijs, T. & Wets, G. (2014). Application of Geographically Weighted Regression Technique in Spatial Analysis of Fatal and Injury Crashes. Journal of Transportation Engineering, 140(8).
    Pljakic, M., Jovanovic, D., Matovic, B. & Micic, S. (2019). Macro-level accident modeling in Novi Sad: A spatial regression approach. Accident Analysis & Prevention, 132, 105259. doi:10.1016/j.aap.2019.105259.
    Rhee, K. A., Kim, J. K., Lee, Y. I. & Ulfarsson, G. F. (2016). Spatial regression analysis of traffic crashes in Seoul. Accident Analysis & Prevention, 91, 190-199.
    SEGIS, Ministry of the Interior (MOI), Taiwan (2021). Socio-economic data service platform. Retrieved from: https://segis.moi.gov.tw/.
    Shin, D. S., Byun, J. H. & Jeong, B. Y. (2019). Crashes and Traffic Signal Violations Caused by Commercial Motorcycle Cwiers. Safety and Health at Work, 10(2), 213-218.
    Siddiqui, C., Abdel-Aty, M. & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident Analysis & Prevention, 45, 382-391. doi:10.1016/j.aap.2011.08.003.
    Statista. (2020). Global segment sizes in million US$ and the growth rate. eServices Report 2020 –Online Food Delivery.
    Statistics office, Ministry of Transportation and Communications (MOTC), Taiwan. (2017). Survey on the status of people's daily use of vehicles.
    Truong, L. T. & Nguyen, H. T. T. (2019). Mobile phone related crashes among motorcycle taxi drivers. Accident Analysis & Prevention, 132, 105288. doi:10.1016/j.aap.2019.105288.
    Truong, L. T., Nguyen, H. T. T. & De Gruyter, C. (2018). Correlations between mobile phone use and other risky behaviours while riding a motorcycle. Accident Analysis & Prevention, 118, 125-130.
    Tsai, Ju-Han. (2020a). Exclusive interview with the Foodpanda general manager: I want to find the rules of the fresh delivery market! Businessweekly. Retrieved from: https://www.businessweekly.com.tw/magazine/Article_mag_page.aspx?id=7001511
    Tsai, Sai-Pei. (2020b). Taipei delivery accident hit a new high this year in April. Liberty Times Net. Retrieved from: https://news.ltn.com.tw/news/life/paper/1371758.
    Tsai, Y. C., Wu, S. C., Huang, J. F., Kuo, S. C. H., Rau, C. S., Chien, P. C., Hsieh, C. H. (2019). The effect of lowering the legal blood alcohol concentration limit on driving under the influence (DUI) in southern Taiwan: a cross-sectional retrospective analysis. BMJ Open, 9(4), e026481. doi:10.1136/bmjopen-2018-026481.
    Tsai, Yueh-Lin., Peng, Kuan-Lin., Yeh, Feng-Wei. (2020). More than thousands delivery accidents happened in Taipei City whinin 7 months. Chinese Television Service.
    Wang, H., De Backer, H., Lauwers, D. & Chang, S. K. J. (2019). A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan). Journal of Transport Geography, 75, 94-109.
    Wen, C. H., Chiou, Y. C. & Huang, W. L. (2012). A dynamic analysis of motorcycle ownership and usage: a panel data modeling approach. Accident Analysis & Prevention, 49, 193-202.
    Wen, T. H. (2015). Spatial Analysis: Methods and Applications: Yeh Yeh Book Gallery.
    WHO. (2018). WHO Global status report on road safety 2018.
    Wiratama, B. S., Chen, P. L., Ma, S. T., Chen, Y. H., Saleh, W., Lin, H. A. & Pai, C. W. (2020). Evaluating the combined effect of alcohol-involved and un-helmeted riding on motorcyclist fatalities in Taiwan. Accident Analysis & Prevention, 143, 105594. doi:10.1016/j.aap.2020.105594.
    Xu, P. & Huang, H. (2015). Modeling crash spatial heterogeneity: random parameter versus geographically weighting. Accident Analysis & Prevention, 75, 16-25.
    Yeh, T. H., Chang, H. L. & Chang, H. W. (2008). Initial age of unlicensed motorcycling experience for a cohort of high school students. Accident Analysis & Prevention, 40(2), 511-517.
    Ziakopoulos, A. & Yannis, G. (2020). A review of spatial approaches in road safety. Accident Analysis & Prevention, 135, 105323. doi:10.1016/j.aap.2019.105323.

    無法下載圖示 校內:2026-07-04公開
    校外:2026-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE