簡易檢索 / 詳目顯示

研究生: 許睿宇
HSU, JUI-YU
論文名稱: 高溫PEM燃料電池堆之模擬重組氣體CO濃度影響與陽極尾氣分析研究
Study on the Influence of CO Concentration in Recombination Gas and Anode Outlet Gas Analysis of High-Temperature PEM Fuel Cell Stack
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 高溫質子交換膜燃料電池電堆鎖附扭力一氧化碳毒化稀釋氣體重組氣陽極尾氣分析
外文關鍵詞: High temperature proton exchange membrane fuel cell, CO tolerance, anode outlet gas analysis, recombination gas, clamping torque, diluted gas, stack
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池成為近年綠能的關注焦點,但由於氫氣儲存、運輸與加氫站興建之困難,使用重組器即時產氫供給燃料電池發電,可減少中間過程的能源轉換效率損失,但重組氣體中的混合氣體含有微量的一氧化碳將會影響燃料電池之性能,而高溫燃料電池能夠有效提高對於一氧化碳之容忍度,因此開發高溫型質子交換膜燃料電池成為未來趨勢之一。本研究以高溫燃料電池作為研究對象,探討高溫型質子交換膜燃料電池堆通入模擬重組氣體與CO毒化特性研究。
    本研究利用極化曲線、電化學阻抗頻譜和即時氣體分析儀對燃料電池進行性能、阻抗與陽極出口尾氣分析,探討參數包括電堆鎖附扭力、操作溫度、氫氣計量比、空氣計量比、一氧化碳濃度及陽極出口尾氣氣體濃度分析。實驗結果顯示尋找最佳鎖附扭力為燃料電池之重要參數,其鎖附扭矩由25kgf-cm增加至最佳扭力為37.5 kgf-cm,使燃料電池之最佳功率密度上升5.9%。重組氣體含有氮氣與二氧化碳僅對燃料電池造成氫氣之稀釋效應,但對於燃料電池之性能影響不大,氫氣劑量比在固定在1.3並添加稀釋氣體35%氮氣或二氧化碳都僅使性能衰退3%,稀釋氣體中夾帶微量一氧化碳將會加劇一氧化碳對燃料電池性能影響。不論燃料電池陽極含有多少百分比(0.5%~3%)的一氧化碳,其尾氣含有的一氧化碳濃度皆會受到操作溫度影響,本實驗發現陽極出口尾氣所偵測到之一氧化碳濃度濃度由大小隨溫度變化為[CO]165°C >[CO]160°C >[CO]155°C。

    The fuel cell has become one of the roles of green energy in recent years. Applying reformer to produce hydrogen rich gas to generate electricity by fuel cell can reduce the loss of energy efficiency during production and transportation processes. The recombination gas containing carbon monoxide will affect the performance of fuel cell. High-temperature fuel cell can effectively improve the tolerance to carbon monoxide, so the development of high-temperature proton exchange membrane fuel cell has become one of the promising trends. This study takes high-temperature fuel cell stack as the research object. It discusses the research on the recombination gas and CO poisoning of high-temperature proton exchange membrane fuel cell stack.
    In this study, the polarization curve and electrochemical impedance spectrum were used to analyze the HT-PEMFC stack performance. In addition, use a gas analyzer to analyze the gas coming from an anode outlet. The parameters discussed included fuel cell stack clamping torque, operating temperature, hydrogen & air stoichiometric ratio, carbon monoxide concentration, and anode outlet exhaust gas. The experimental results show that finding the best clamping torque is an important parameter of the fuel cell stack. The performance of the stack is increased from 25 kgf-cm to the best torque of 37.5 kgf-cm and the power density at current density 400 mA/cm2 is increased from 190 mW/cm2 to 201 mW/cm2. Percentage increased by 5.9 %.
    The carbon dioxide in the recombination gas only has dilution effect on fuel cell stack performance and not much impact on it. Hydrogen contains 35% nitrogen or carbon dioxide only reduce power density by 3 % & 2 %. In addition, the carbon monoxide in the diluted gas increase the poisoning effect on fuel cell stack performance. Regardless of how much percentage (i.e. 0.5~3%) of carbon monoxide contained in the fuel cell stack, the carbon monoxide concentration of the anode outlet gas was affected by the operating temperature. This study found that the concentration of carbon monoxide from high to low according to operating temperature as follows: [CO]165°C>[CO]160°C>[CO]155°C.

    摘要 I Abstract II 誌謝 V 目 錄 VI 表目錄 IX 圖目錄 X 符號 XIV 第 1 章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 1-3 文獻回顧 5 1-3-1 重組器 5 1-3-2 氮氣對於燃料電池之影響 5 1-3-3 二氧化碳對於燃料電池之影響 6 1-3-4 一氧化碳對於燃料電池之影響 9 1-3-5 控制脈衝電流 11 1-3-6 Air-bleeding 11 1-3-7 燃料供應週期變化 12 1-3-8 添加其他合金 12 1-3-9 碳腐蝕 13 1-3-10 膜降解或電解質流失 15 1-3-11 高溫型PEMFC 16 第 2 章 基礎理論 21 2-1 質子交換膜燃料電池組成 21 2-1-1 質子交換膜(Proton Exchange Membrane, PEM) 21 2-1-2 電極觸媒層(Catalyst Layer, CL) 22 2-1-3 氣體擴散層(Gas Diffusion Layer, GDL) 23 2-1-4 氣密墊片(Gasket) 24 2-1-5 雙極板 24 2-1-6 集電板 25 2-1-7 端板 25 2-1-8 電堆設計 26 2-2 質子交換膜燃料電池之工作原理 26 第 3 章 實驗設備 29 3-1 5kW燃料電池堆測試平台 30 3-2 氣體混合控制平台 31 3-3 多頻即時氣體分析儀 33 3-4 交流阻抗分析儀 35 3-5 燃料電池測漏平台 35 3-6 高溫質子交換模燃料電池堆 36 3-6-1 燃料電池堆 36 3-6-2 扁線彈簧 37 第 4 章 實驗方法 39 4-1 極化曲線(Polarization Curve) 39 4-1-1 活化過電位(Activation Overvoltage) 40 4-1-2 歐姆過電位 41 4-1-3 濃度過電位 42 4-2 質子交換膜燃料電池電化學阻抗圖譜分析 44 4-3 等效電路模擬分析 45 4-4 燃料電池進行漏氣測試 49 4-5 實驗矩陣 50 第 5 章 結果與討論 52 5-1 高溫型質子交換膜燃料電池 52 5-1-1 不同鎖附扭力對24級高溫型燃料電池堆性能與阻抗影響 52 5-1-2 操作溫度和氣體計量比對24級高溫型燃料電池堆性能影響 55 5-1-3 稀釋氣體氮氣與二氧化碳對高溫型PEMFC性能與阻抗之影響 58 5-1-4 混合氣體對高溫型PEMFC之影響 65 5-2 一氧化碳對高溫型PEMFC性能與阻抗之影響 66 5-2-1 溫度160 oC下,不同一氧化碳濃度之影響 67 5-2-2 使用氣體分析儀分析含有一氧化碳或二氧化碳之陽極出口尾氣 72 第 6 章 結論 81 第 7 章 未來工作 83 參考文獻 84

    【1】 K. Geissler, E. Newson, F. Vogel, T. B. Truong, P. Hottinger and A. Wokaun (2001), Autothermal methanol reforming for hydrogen production in fuel cell applications, Physical Chemistry Chemical Physics, Volume3, pp.289-293.
    【2】 陳君奇(2010), 一氧化碳及氫氣濃度對燃料電池影響之研究, 國立成功大學航空太空工程學系碩士論文。
    【3】 U. Shimpalee, J.W. Van Zee (2006), Investigation of gas diffusion media inside PEMFC Using CFD Modeling, Journal of Power Sources, Volume163, pp.480–489.
    【4】 C.Y. Chen, W.H. Lai, W.M. Yan, C.C. Chen, S.W. Hsu (2013), Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with PteRu anodic catalyst, Journal of Power Sources, Volume243, pp. 138-146.
    【5】 T. Gu, W.-K. Lee, J. Van Zee and M. Murthy (2004), Effect of reformate components on PEMFC performance: dilution and reverse water gas shift reaction, Journal of the Electrochemical Society, Volume51 (12), pp.A2100.
    【6】 R.T Ralph, M.P. Hogarth (2002), Catalysis for low temperature fuel cells, Platinum Met Rev, Volume46 (3), pp.35-117.
    【7】 F. Zhou, S.J. Andreasen, S. K. Kær, J. O. Park (2015), Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: Influence of anode humidification and carbon dioxide, International Journal of Hydrogen Energy, Volume40, pp.14932-14941.
    【8】 A. Rodrigues, J. C. Amphlett, R. F. Mann, B. A. Peppley and P. R. Roberge (1997), Carbon monoxide poisoning of proton-exchange membrane fuel cells, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203), IEEE.
    【9】 Q. Li, J. O. Jensen, and J. Bjerrum (2003), The  CO  poisoning effect in PEMFCs operational at temperatures up to 200°C, Journal of The Electrochemical Society, Volume150 (12), pp.A1599-A1605.
    【10】 J. R. Vang and S. K. Kær (2011), High temperature PEM fuel cell performance characterisation with CO using electrochemical impedance spectroscopy, International journal of hydrogen energy, Volume36 (16), pp.9815-9830.
    【11】 Y. Devrim, A. Albostan and H. Devrim (2018), Experimental investigation of CO tolerance in high temperature PEM fuel cells, International Journal of Hydrogen Energy, Volume43 (40), pp.18672-18681.
    【12】 N. Zamel and X. Li (2011), Effect of contaminants on polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, Volume37 (3), pp.292-329.
    【13】 H.F. Oetjen, V.M. Schmidt (1996), Performance data of a proton exchange membrane fuel cell using H2/CO as Fuel Gas, Journal of the Electrochemical Society, Volume143, pp.3838-3842.
    【14】 J. Davies, and G. Tsotridis (2008), Temperature-dependent kinetic study of CO desorption from Pt PEM fuel cell anodes, The Journal of Physical Chemistry C, Volume112 (9), pp.3392-3397.
    【15】 S. Gilman (1964), The mechanism of electrochemical oxidation of carbon monoxide and methanol on platinum, The Journal of Physical Chemistry, Volume68 (1), pp.70-80.
    【16】 W. Vogel, L. Lundquist, P. Ross and P. Stonehart (1975), The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO, Electrochimica Acta, Volume20 (1), pp.79-93.
    【17】 J. Baschuk, and X. Li (2001), Carbon monoxide poisoning of proton exchange membrane fuel cells, International Journal of Energy Research, Volume25 (8), pp.695-713
    【18】 W. Adams, J. Blair, K. Bullock and C. Gardner (2005), Enhancement of the performance and reliability of CO poisoned PEM fuel cells, Journal of power sources, Volume145 (1), pp.55-61.
    【19】 S. Jiménez, J. Soler, R.X. Valenzuela, L. Daza (2005), Assessment of the performance of a PEMFC in the presence of CO, Journal of Power Sources, Volume151, pp.69–73.
    【20】 T. Springer, T. Zawodzinski and S. Gottesfeld (1997), Modeling of polymer electrolyte fuel cell performance with reformate fuel feed streams, Los Alamos National Lab., NM (United States).
    【21】 S. M. M. Ehteshami and S. H. Chan (2013), A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells, Electrochimica Acta, Volume93, pp.334-345.
    【22】 P. J. Sarma, C. L. Gardner, S. Chugh, A. Sharma and E. Kjeang (2020), Strategic implementation of pulsed oxidation for mitigation of CO poisoning in polymer electrolyte fuel cells, Journal of Power Sources, Volume468, pp.228352.
    【23】 A. Thomason, T. Lalk and A. Appleby (2004), Effect of current pulsing and “self-oxidation” on the CO tolerance of a PEM fuel cell, Journal of power sources, Volume135 (1-2), pp.204-211.
    【24】 W.A. Adams, J. Blair, K.R. Bullock, C.L. Gardner (2005), Enhancement of the performance and reliability of CO poisoned pem ffuel cells, Journal of Power Sources, Volume145, pp.55–61.
    【25】 H. Lua, L. Rihko-Struckmanna, R. Hanke-Rauschenbach, K. Sundmacher (2009), Improved electrochemical CO removal via potential oscillations in serially connected pem fuel cells with ptru anodes, Electrochimica Acta, Volume54, pp.1184–1191.
    【26】 C.-H. Wan, and Q.-H. Zhuang (2007), Novel layer wise anode structure with improved CO-tolerance capability for PEM fuel cell, Electrochimica acta, Volume52 (12), pp.4111-4123.
    【27】 M. Sugishita, J. Wada, K. Matsuzawa, H. Yamada and A. Tasaka (2008), Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells, Journal of Power Sources, Volume178 (2), pp.699-705.
    【28】 T. Ralph, and M. Hogarth (2002), Catalysis for low temperature fuel cells, Platinum Metals Review, Volume46(3), pp.117-135.
    【29】 M. Murthy, M. Esayian, W. Lee, J. W. Van Zee (2003), The Effect of temperature and pressure on the performance of a PEMFC exposed to transient CO concentrations, Journal of The Electrochemical Society, Volume150 (1), pp.29-34.
    【30】 B. J. Hwang, K. L. Hsueh (2013), Comprehensive study of an air bleeding technique on the performance of a proton-exchange membrane fuel cell subjected to CO poisoning, Journal of Power Sources, Volume242, pp.264-272.
    【31】 S. Jiménez, J. Soler, R. Valenzuela and L. Daza (2005), Assessment of the performance of a PEMFC in the presence of CO, Journal of Power Sources, Volume151, pp.69-73.
    【32】 M. Rubio, A. Urquia and S. Dormido (2010), Diagnosis of performance degradation phenomena in PEM fuel cells, International Journal of Hydrogen Energy, Volume35 (7), pp.2586-2590.
    【33】 Z. Qi, C. He and A. Kaufman (2002), Effect of CO in the anode fuel on the performance of PEM fuel cell cathode, Journal of Power Sources, Volume111 (2), pp.239-247.
    【34】 M. A. Díaz, A. Iranzo, F. Rosa, F. Isorna, E. López and J. P. Bolivar (2015), Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells, Energy, Volume90, pp.299-309.
    【35】 DP. Wilkinson, CYF. Chow, DE. Allan, PJ. Allan, EP. Johannes, JA. Roberts, J. St-Pierre, CJ. Longley (2000), Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode. United States Patent 6,096,448.
    【36】 T. Ralph, and M. Hogarth (2002), Catalysis for low temperature fuel cells, Platinum Metals Review, Volume46 (3), pp.117-135.
    【37】 J. Stumper, and C. Stone (2008), Recent advances in fuel cell technology at Ballard, Journal of Power Sources, Volume176 (2), pp.468-47.
    【38】 G. Kohlmayr, and P. Stonehart (1973), Adsorption kinetics for carbon monoxide on platinum in hot phosphoric acid, Electrochimica Acta, Volume18 (2), pp.211-223.
    【39】 S. M. M. Ehteshami, S. H. Chana (2013), A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells, Electrochimica Acta, Volume93, pp.334-345.
    【40】 X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu and G. Wu (2020), Current progress of Pt and Pt-based electrocatalysts used for fuel cells, Sustainable Energy & Fuels, Volume4 (1), pp.15-30.
    【41】 S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen and S. K. Kær (2016), A comprehensive review of PBI-based high temperature PEM fuel cells, International Journal of Hydrogen Energy, Volume41 (46), pp.21310-21344.
    【42】 S.-E. Jang, Y.-J. Ko, H.-J. Kim and H. Kim (2009), Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells, Journal of Power Sources, Volume193 (2), pp.575-579.
    【43】 S. Maass, F. Finsterwalder, G. Frank, R. Hartmann and C. Merten (2008), Carbon support oxidation in PEM fuel cell cathodes, Journal of Power Sources, Volume176 (2), pp.444-451.
    【44】 H.-S. Oh, J.-H. Lee and H. Kim (2012), Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells, International journal of hydrogen energy, Volume37 (14), pp.10844-10849.
    【45】 L. Roen, C. Paik and T. Jarvi (2003), Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochemical and Solid State Letters, Volume7(1), pp.19.
    【46】 T. J. Schmidt, and J. Baurmeister (2008), Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, Journal of Power Sources, Volume176 (2), pp. 428-434.
    【47】 N. Yousfi-Steiner, P. Moçotéguy, D. Candusso and D. Hissel (2009), A review on polymer electrolyte membrane fuel cell catalyst degradation, Journal of Power Sources, Volume194 (1), pp.130-145.
    【48】 Y. Yu, H. Li, H. Wang, X.-Z. Yuan, G. Wang and M. Pan (2012), A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: Causes, consequences, and mitigation strategies, Journal of Power Sources, Volume205, pp.10-23.
    【49】 A. Laconti, H. Liu, C. Mittelsteadt and R. McDonald (2006), Polymer electrolyte membrane degradation mechanisms in fuel cells-findings over the past 30 years and comparison with electrolyzers, ECS Transactions, Volume1 (8), pp.199.
    【50】 J. Liao, J. Yang, Q. Li, L. N. Cleemann, J. O. Jensen, N. J. Bjerrum, R. He and W. Xing (2013), Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions, Journal of power sources, Volume238, pp.516-522.
    【51】 S. Samms, S. Wasmus and R. Savinell (1996), Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments, Journal of the Electrochemical Society, Volume143 (4), pp.1225.
    【52】 S. H. Eberhardt, M. Toulec, F. Marone, M. Stampanoni, F. Büchi and T. J. Schmidt (2015), Dynamic operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (Re) distribution, Journal of the Electrochemical Society, Volume162 (3), pp.310.
    【53】 S. Lang, T. J. Kazdal, F. Kühl and M. J. Hampe (2015), Experimental investigation and numerical simulation of the electrolyte loss in a HT-PEM fuel cell, International Journal of Hydrogen Energy, Volume40 (2), pp.1163-1172.
    【54】 T. J. Kazdal, S. Lang, F. Kühl and M. J. Hampe (2014), Modelling of the vapour–liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell, Journal of Power Sources, Volume249, pp.446-456.
    【55】 N. Pilinski, M. Rastedt and P. Wagner (2015), Investigation of phosphoric acid distribution in PBI based HT-PEM fuel cells, ECS Transactions, Volume69 (17), pp. 323.
    【56】 S.K. Das, A. Reis, K.J. Berry (2009), Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell, Journal of Power Sources, Volume193, pp.691–698.
    【57】 C. Zhang, W. Zhou, M. M. Ehteshami, Y. Wangc, S. H. Chan (2015), Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation, Energy Conversion and Management, Volume105, pp.433–441.
    【58】 陳震宇(2010), 溫度與溼度對PBI/H3PO4燃料電池特性影響之研究, 國立成功大學航空太空工程學系博士論。
    【59】 J.J. Linares, C. Sanches, V.A. Paganin, E.R. Gonzalez (2010), Performance of a poly(2,5-benzimidazole)-based polymer electrolyte membrane fuel cell, International Journal of Hydrogen Energy, Volume37, pp 7212-7220.
    【60】 C.Y. Chen, W.H. Lai (2010), Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell, Journal of Power Sources, Volume195, pp.7152–7159.
    【61】 R. Radu, N. Zuliani, R. Taccani (2011), Design and experimental characterization of a high-temperature proton exchange membrane fuel cell stack, Journal of Fuel Cell and Technology, Volume8, pp. 051007-1-051007-5.
    【62】 陳宜寬(2012), 重組氣體對高溫型質子交換膜燃料電池影響之研究, 國立成功大學航空太空工程學系碩士論文。
    【63】 C.Y. Chen, W.H. Lai, Y.K. Chen, S.-S. Su (2014), Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases, International Journal of Hydrogen Energy, Volume39, pp.13757-13762.
    【64】 H. Lu, L. Rihko-Struckmann, R. Hanke-Rauschenbach and K. Sundmacher (2008), Dynamic behavior of a PEM fuel cell during electrochemical CO oxidation on a PtRu anode, Topics in Catalysis, Volume51 (1), pp.89-97.
    【65】 黃鎮江 (2017), 燃料電池, 第四版, 新北市:全華圖書。
    【66】 KhadijehHooshyari, BahmanAminiHorri, HamidAbdoli, Mohsen Fallah Vostakola, A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells, Journals Energies, Volume14, Issue 17 10.3390/en14175440.
    【67】 Changjie Li, Ye Liu, Bing Xu and Zheshu Ma (2019), Finite time thermodynamic optimization of an irreversible proton exchange membrane fuel cell, DOI: 10.3390/pr7070419 for Vehicle Use.
    【68】 X.Z. Yuan, C. Song, H. Wang, and J. Zhang (2010), Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications.
    【69】 J.L. Zhang, Y.H. Tang, C.J. Song, and J.J. Zhang (2007), AC impedance technique in PEM fuel cell diagnosis - A Review, International Journal of Hydrogen Energy, Volume32, pp.4365-4380.
    【70】 N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, and Ould-Bouamama, B, Model based PEM fuel cell state-of-health monitoring via AC impedance measurements, Journal of Power Sources, Volume159, pp.905-913.

    無法下載圖示 校內:2027-07-25公開
    校外:2027-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE