| 研究生: |
楊庭喻 Yang, Ting-Yu |
|---|---|
| 論文名稱: |
堇青石陶瓷的相轉換及熱膨脹行為 Phase Transformation and Thermal Expansion Behavior of Cordierite Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 堇青石 、相轉換 、熱膨脹行為 |
| 外文關鍵詞: | cordierite, phase transformation, thermal expansion behavior |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討純相氧化物以固態反應法合成堇青石於高溫燒結時的相轉換行為及燒結時相轉換反應對陶瓷體熱膨脹係數所造成的影響。結果顯示原始粉末經過煆燒條件 1300℃/1 h 淬冷後即可得到單一的 α-Cordierite 相,根據 Distortion index 計算分析、 Rietveld method 晶體結構精算、及使用 MAS-NMR 觀察陶瓷體內部的晶體結構,發現無序結構的 α-Cordierite 相隨後續燒結溫度升高及持溫時間增長產生相轉換反應逐漸形成有序結構的 β-Cordierite 相。
根據熱膨脹係數的量測結果顯示熱膨脹係數隨燒結溫度升高及持溫時間增長而上升,此變化趨勢與 β-Cordierite 相含量的增加趨勢相同,因此判斷 β-Cordierite 相含量越多會造成陶瓷體的整體熱膨脹係數上升,若要得到較低熱膨脹係數的陶瓷體則需要在製備過程中注意製程參數條件的調整避免 α-Cordierite 相轉換成 β-Cordierite 相。
關鍵詞:堇青石、相轉換、熱膨脹行為
This study aimed to investigate phase transformation reaction at high temperature and the effect of phase content on the thermal expansion behavior of cordierite ceramics.
Magnesium oxide, aluminium oxide and silicon dioxide were used to synthesize α-Cordierite through solid-state reaction at 1300℃/1 h. According to Distortion index, Rietveld method, and MAS-NMR, the disorder structure (α-Cordierite) has transformed to order structure (β-Cordierite) when sintering temperature and time increased. The phase transformation reaction was found to be processed by rearrangement of the position of atoms in the structure.
It was shown in this study that β-Cordierite phase has increased the thermal expansion coefficient.
Keywords : cordierite, phase transformation, thermal expansion behavior
[1] J. Benito, X. Turrillas, G. Cuello, A. De Aza, S. De Aza, and M. Rodríguez, “Cordierite synthesis. A time-resolved neutron diffraction study,” J. Eur. Ceram. Soc., 32 371–379 (2012).
[2] T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, “Solid state synthesis and its characterization oh high density cordierite ceramics using fine oxide powder,” J. Ceram. Soc. Jap., 118 246-249 (2010).
[3] F. Hummel and H. Reid, “Thermal expansion of some glasses in the system MgO-Al2O3- SiO2,” J. Am. Ceram. Soc., 34 319-321 (1951).
[4] I. Lachman, R. Bagley, and R. Lewis, “Thermal expansion of extruded cordierite ceramic,” Am. Ceram. Soc. Bull., 60 [2] 202-205 (1981).
[5] A. Putnis, Introduction to mineral sciences, Cambridge university press (1992).
[6] M. Glendening and W. Lee, “Microstructure development on crystallizing hot-pressed pellet of cordierite melt-derived glass containing B2O3 and P2O5,” J. Am. Ceram. Soc., 79 705-713 (1996).
[7] M. Hochella, JR. and G. Brown, JR., “Structural mechanisms of anomalous thermal expansion of cordierite-beryl and other framework silicates,” J. Am. Ceram. Soc., 69 13-18 (1986).
[8] J. Lee and J. Pentecost, “Properties of flux-grown cordierite single crystals,” J. Am. Ceram. Soc., 59 183 (1976).
[9] G. Fischer, D. Evans, and J. Geiger, “Crystal lattice thermal expansion of cordierite,” presented at the American Crystallographic Association Meeting at Pennsylvania State University, State College, 18-23 (1974).
[10] M. Milberg and H. Blair, “Thermal expansion of cordierite,” J. Am. Ceram. Soc., 60 372 (1977).
[11] D. Evans, G. Fischer, J. Geiger, and F. Martin, “Thermal expansion and chemical modifications of cordierite,” J. Am. Ceram. Soc., 63 629-634 (1980).
[12] M. Hochella, Jr., G. Brown, Jr., F. Ross, and G. Gihhs, “High-temperature crvstal chemistry of hydrous Mg- and Fe-cordierite,” Am. Mineral., 64 37-51 (1979).
[13] P. Predecki and J. Haas, “Structural aspects of the lattice thermal expansion of hexagonal cordierite,” J. Am. Ceram. soc., 70 175-182 (1987).
[14] C. F. Yang, “The effect of Bi2O3 on the dielectric characteristics of CaO-Al2O3-MgO-SiO2 glass ceramics,” J. Mater. Sci., 15 1618–1620 (1996).
[15] S. Lo, C.F. Yang, “The sintering characterisitics of Bi2O3 added CaO-Al2O3-MgO-SiO2 glass powder,” Ceram. Int., 24 139–144 (1998).
[16] J. Gonzalez-Velasco, R. Ferret, R. Lopez-Fonseca, and M. Gutierrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder Technol., 153 34-42 (2005).
[17] M. Camerucci, G. Urretavizcaya, and A. Cavalieri, “Sintering of cordierite based materials,” Ceram. Int., 29 159-168 (2003).
[18] W. Kingery, The proof test for ceramic processing, in: G.Y. Onoda Jr., L.L. Hench (Eds.), Ceramic Processing Before Firing, Wiley, Florida, 291-306 (1978).
[19] M. Yokota, N. Saio, J. Hirai, A. Sato, and N. Kubota, “Crystal growth rate enhancement caused by adhesion of small crystals,” AIChE J., 43 3264- 3270 (1997).
[20] J. Banjuraizah, H. Mohamad, and Z. Ahmad, “Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method,” J. Alloys Compd., 494 256-260 (2010).
[21] M. Camerucci, G. Urretavizcaya, M. Castro, and A. Cavalieri, “Electrical properties and thermal expansion of cordierite and cordierite-mullite materials,” J. Eur. Ceram. Soc., 21 2917-2923 (2001).
[22] A. Miyashiro, T. Hyama, M. Yamasaki, and T. Miyashiro, “The polymorphism of cordierite and indialite,” J. Am. Ceram. Soc., 253 185-208 (1955).
[23] A. Miyashiro, “Cordierite–indialite relations,” J. Am. Ceram. Soc., 235 43-62 (1957).
[24] H.M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta. Crystal., 22 151-152 (1967).
[25] R. Goren , H. Gocmez, and C. Ozgur, “Synthesis of cordierite powder from talc, diatomite and alumina,” Ceram. Int., 32 407-409 (2006).
[26] R. Goren, C. Ozgur, and H. Gocmez, “The preparation of cordierite from talc, fly ash,fused silica and alumina mixtures,” Ceram. Int., 32 53-56 (2006).
[27] A. Putnis, and David L. Bish, “The mechanism and kinetics of Al, Si ordering in Mg-cordierite,” Am. Mineral., 68 60-65 (1983).
[28] Yuan-Jang Sue, San-Yuan Chen, Hong-Yang Lu, Pouyan Shen, “Surface nucleation and cellular growth kinetics of cordierite glass ceramics containing 3 mol% Y2O3-ZrO2,” J. Mater. Sci., 26 1699-1704 (1991).
[29] Koichi Watanabe, Edward A. Giess, “Crystallization kinetics of high-cordierite glass,” J. Non-Cryst. Solids, 169 306-301 (1994).
[30] Colin A. Fyfe, John M. Thomas, Jacek Klinowski, Gian C. Gobbi, “Magic-Angle-Spinning NMR (MAS-NMR) Spectroscopy and the Structure of Zeolites,” Angew. Chem. Int. Ed., 22 259-275 (1983).
[31] A. Putnis, E. Salje, Simon A.T. Redfern, Colin A. Fyfe, Harald Strobl, “Structural States of Mg-Cordierite I : Order Parameters from Synchrotron X-Ray and NMR Data,” Phys. Chem. Miner., 14 446-454 (1987).
[32] A. Putnis, R. J. Angle, “Al, Si Ordering in Cordierite Using Magic Angle Spinning NMR.,” Phys. Chem. Miner., 12 217-222 (1985).
[33] H. D. Megaw, “Crystal structures and thermal expansion,” Mater. Res. Bull., 6 1007-1018 (1971).
[34] G. E. Brown, “Olivines and silicates spinels,” Reviews in Mineralogy, 5 275-381 (1980).
[35] A. Putnis, “Order-modulated structures and the thermodynamics of cordierite reactions,” Nature, 287 11 Sep. (1980).
[36] V. L. Vinograd, L. L. Perchuk, T. V. Gerya, A. Putnis, B. Winkler, and J. D. Gale, “Order/Disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction texures in granulites,” Petrologiya, 15 459-473 (2007).
[37] American Mineralogist Crystal Structure Database.