簡易檢索 / 詳目顯示

研究生: 楊庭喻
Yang, Ting-Yu
論文名稱: 堇青石陶瓷的相轉換及熱膨脹行為
Phase Transformation and Thermal Expansion Behavior of Cordierite Ceramics
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 堇青石相轉換熱膨脹行為
外文關鍵詞: cordierite, phase transformation, thermal expansion behavior
相關次數: 點閱:100下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討純相氧化物以固態反應法合成堇青石於高溫燒結時的相轉換行為及燒結時相轉換反應對陶瓷體熱膨脹係數所造成的影響。結果顯示原始粉末經過煆燒條件 1300℃/1 h 淬冷後即可得到單一的 α-Cordierite 相,根據 Distortion index 計算分析、 Rietveld method 晶體結構精算、及使用 MAS-NMR 觀察陶瓷體內部的晶體結構,發現無序結構的 α-Cordierite 相隨後續燒結溫度升高及持溫時間增長產生相轉換反應逐漸形成有序結構的 β-Cordierite 相。
    根據熱膨脹係數的量測結果顯示熱膨脹係數隨燒結溫度升高及持溫時間增長而上升,此變化趨勢與 β-Cordierite 相含量的增加趨勢相同,因此判斷 β-Cordierite 相含量越多會造成陶瓷體的整體熱膨脹係數上升,若要得到較低熱膨脹係數的陶瓷體則需要在製備過程中注意製程參數條件的調整避免 α-Cordierite 相轉換成 β-Cordierite 相。

    關鍵詞:堇青石、相轉換、熱膨脹行為

    This study aimed to investigate phase transformation reaction at high temperature and the effect of phase content on the thermal expansion behavior of cordierite ceramics.
    Magnesium oxide, aluminium oxide and silicon dioxide were used to synthesize α-Cordierite through solid-state reaction at 1300℃/1 h. According to Distortion index, Rietveld method, and MAS-NMR, the disorder structure (α-Cordierite) has transformed to order structure (β-Cordierite) when sintering temperature and time increased. The phase transformation reaction was found to be processed by rearrangement of the position of atoms in the structure.
    It was shown in this study that β-Cordierite phase has increased the thermal expansion coefficient.

    Keywords : cordierite, phase transformation, thermal expansion behavior

    中文摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 理論基礎與文獻回顧 3 2-1 堇青石之晶體結構 3 2-2 堇青石單晶的熱膨脹行為 6 2-3 堇青石陶瓷體中影響熱膨脹行為的因素 8 2-4 堇青石結構中的 α-Cordierite 相與 β-Cordierite 相 11 2-5 固態核磁共振分析元素配位 (MAS-NMR) 18 2-6 動力學分析方法 20 2-6-1 相轉換反應速率方程式 20 2-6-2 以Arrhenius 方程式計算反應活化能 22 第三章 實驗方法及步驟 24 3-1 起始原料 24 3-2 實驗流程 25 3-2-1 粉末製備 25 3-2-2 堇青石陶瓷體的燒結製備 25 3-3 材料分析 26 3-3-1 粉末之 DTA/TG分析 26 3-3-2 粉末繞射分析 (XRD) 27 3-3-3 掃描式電子顯微鏡 28 3-3-4 陶瓷體之密度量測 28 3-3-5 晶體結構分析 29 3-3-6 熱膨脹行為分析 30 3-3-7 NMR 固態核磁共振分析 31 第四章 結果與討論 32 4-1 粉末分析 32 4-1-1 原始粉末 DTA/TG 分析 32 4-1-2 混合後之粉末分析 35 4-1-3 燒結條件 39 4-2 陶瓷體分析 40 4-3 陶瓷體相鑑定分析 45 4-4 陶瓷體中 α-Cordierite 相與 β-Cordierite 相鑑定分析 47 4-4-1 以 Distortion index 繞射峰扭曲程度分析 50 4-4-2 以 Rietveld method 晶體結構精算分析 51 4-5 燒結時的相轉換反應 54 4-6 相轉換動力學分析 62 4-7 熱膨脹行為分析 68 第五章 結論 75 第六章 參考文獻 76 第七章 附錄 80 7-1 煆燒後之粉末分析數據 80 7-2 結構中的 Al-O 四面體彼此連結數目推導 81 7-3 起始粉末元素含量表 83

    [1] J. Benito, X. Turrillas, G. Cuello, A. De Aza, S. De Aza, and M. Rodríguez, “Cordierite synthesis. A time-resolved neutron diffraction study,” J. Eur. Ceram. Soc., 32 371–379 (2012).
    [2] T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, “Solid state synthesis and its characterization oh high density cordierite ceramics using fine oxide powder,” J. Ceram. Soc. Jap., 118 246-249 (2010).
    [3] F. Hummel and H. Reid, “Thermal expansion of some glasses in the system MgO-Al2O3- SiO2,” J. Am. Ceram. Soc., 34 319-321 (1951).
    [4] I. Lachman, R. Bagley, and R. Lewis, “Thermal expansion of extruded cordierite ceramic,” Am. Ceram. Soc. Bull., 60 [2] 202-205 (1981).
    [5] A. Putnis, Introduction to mineral sciences, Cambridge university press (1992).
    [6] M. Glendening and W. Lee, “Microstructure development on crystallizing hot-pressed pellet of cordierite melt-derived glass containing B2O3 and P2O5,” J. Am. Ceram. Soc., 79 705-713 (1996).
    [7] M. Hochella, JR. and G. Brown, JR., “Structural mechanisms of anomalous thermal expansion of cordierite-beryl and other framework silicates,” J. Am. Ceram. Soc., 69 13-18 (1986).
    [8] J. Lee and J. Pentecost, “Properties of flux-grown cordierite single crystals,” J. Am. Ceram. Soc., 59 183 (1976).
    [9] G. Fischer, D. Evans, and J. Geiger, “Crystal lattice thermal expansion of cordierite,” presented at the American Crystallographic Association Meeting at Pennsylvania State University, State College, 18-23 (1974).
    [10] M. Milberg and H. Blair, “Thermal expansion of cordierite,” J. Am. Ceram. Soc., 60 372 (1977).
    [11] D. Evans, G. Fischer, J. Geiger, and F. Martin, “Thermal expansion and chemical modifications of cordierite,” J. Am. Ceram. Soc., 63 629-634 (1980).
    [12] M. Hochella, Jr., G. Brown, Jr., F. Ross, and G. Gihhs, “High-temperature crvstal chemistry of hydrous Mg- and Fe-cordierite,” Am. Mineral., 64 37-51 (1979).
    [13] P. Predecki and J. Haas, “Structural aspects of the lattice thermal expansion of hexagonal cordierite,” J. Am. Ceram. soc., 70 175-182 (1987).
    [14] C. F. Yang, “The effect of Bi2O3 on the dielectric characteristics of CaO-Al2O3-MgO-SiO2 glass ceramics,” J. Mater. Sci., 15 1618–1620 (1996).
    [15] S. Lo, C.F. Yang, “The sintering characterisitics of Bi2O3 added CaO-Al2O3-MgO-SiO2 glass powder,” Ceram. Int., 24 139–144 (1998).
    [16] J. Gonzalez-Velasco, R. Ferret, R. Lopez-Fonseca, and M. Gutierrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder Technol., 153 34-42 (2005).
    [17] M. Camerucci, G. Urretavizcaya, and A. Cavalieri, “Sintering of cordierite based materials,” Ceram. Int., 29 159-168 (2003).
    [18] W. Kingery, The proof test for ceramic processing, in: G.Y. Onoda Jr., L.L. Hench (Eds.), Ceramic Processing Before Firing, Wiley, Florida, 291-306 (1978).
    [19] M. Yokota, N. Saio, J. Hirai, A. Sato, and N. Kubota, “Crystal growth rate enhancement caused by adhesion of small crystals,” AIChE J., 43 3264- 3270 (1997).
    [20] J. Banjuraizah, H. Mohamad, and Z. Ahmad, “Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method,” J. Alloys Compd., 494 256-260 (2010).
    [21] M. Camerucci, G. Urretavizcaya, M. Castro, and A. Cavalieri, “Electrical properties and thermal expansion of cordierite and cordierite-mullite materials,” J. Eur. Ceram. Soc., 21 2917-2923 (2001).
    [22] A. Miyashiro, T. Hyama, M. Yamasaki, and T. Miyashiro, “The polymorphism of cordierite and indialite,” J. Am. Ceram. Soc., 253 185-208 (1955).
    [23] A. Miyashiro, “Cordierite–indialite relations,” J. Am. Ceram. Soc., 235 43-62 (1957).
    [24] H.M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta. Crystal., 22 151-152 (1967).
    [25] R. Goren , H. Gocmez, and C. Ozgur, “Synthesis of cordierite powder from talc, diatomite and alumina,” Ceram. Int., 32 407-409 (2006).
    [26] R. Goren, C. Ozgur, and H. Gocmez, “The preparation of cordierite from talc, fly ash,fused silica and alumina mixtures,” Ceram. Int., 32 53-56 (2006).
    [27] A. Putnis, and David L. Bish, “The mechanism and kinetics of Al, Si ordering in Mg-cordierite,” Am. Mineral., 68 60-65 (1983).
    [28] Yuan-Jang Sue, San-Yuan Chen, Hong-Yang Lu, Pouyan Shen, “Surface nucleation and cellular growth kinetics of cordierite glass ceramics containing 3 mol% Y2O3-ZrO2,” J. Mater. Sci., 26 1699-1704 (1991).
    [29] Koichi Watanabe, Edward A. Giess, “Crystallization kinetics of high-cordierite glass,” J. Non-Cryst. Solids, 169 306-301 (1994).
    [30] Colin A. Fyfe, John M. Thomas, Jacek Klinowski, Gian C. Gobbi, “Magic-Angle-Spinning NMR (MAS-NMR) Spectroscopy and the Structure of Zeolites,” Angew. Chem. Int. Ed., 22 259-275 (1983).
    [31] A. Putnis, E. Salje, Simon A.T. Redfern, Colin A. Fyfe, Harald Strobl, “Structural States of Mg-Cordierite I : Order Parameters from Synchrotron X-Ray and NMR Data,” Phys. Chem. Miner., 14 446-454 (1987).
    [32] A. Putnis, R. J. Angle, “Al, Si Ordering in Cordierite Using Magic Angle Spinning NMR.,” Phys. Chem. Miner., 12 217-222 (1985).
    [33] H. D. Megaw, “Crystal structures and thermal expansion,” Mater. Res. Bull., 6 1007-1018 (1971).
    [34] G. E. Brown, “Olivines and silicates spinels,” Reviews in Mineralogy, 5 275-381 (1980).
    [35] A. Putnis, “Order-modulated structures and the thermodynamics of cordierite reactions,” Nature, 287 11 Sep. (1980).
    [36] V. L. Vinograd, L. L. Perchuk, T. V. Gerya, A. Putnis, B. Winkler, and J. D. Gale, “Order/Disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction texures in granulites,” Petrologiya, 15 459-473 (2007).
    [37] American Mineralogist Crystal Structure Database.

    下載圖示 校內:2018-07-15公開
    校外:2018-07-15公開
    QR CODE