簡易檢索 / 詳目顯示

研究生: 蔡璧妃
Tsai, Pi-Fei
論文名稱: 二維逆向熱傳導問題之暫態熱傳係數的預測
Estimation of transient heat transfer coefficient for 2-D inverse heat conduction problems
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 暫態熱傳係數拉式轉換法二維逆向熱傳導問題
外文關鍵詞: transient heat transfer coefficient, method of Laplace transform., two-dimensional inverse problem
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文乃以拉氏轉換法( method of Laplace transform )及有限差分法( finite difference method ),並搭配最小平方法( least-squares methods ),三次仿樣曲線( cubic spline )及試件內部之量測溫度來預測二維暫態逆向熱傳導問題之邊界上的暫態熱傳係數( transient heat transfer coefficient )。本文於逆算法求解時,試件之未知熱傳係數的函數形式不須事先已知,在進行逆運算前先將整個空間域區分成p個小區域,而後以多個連續的位置三次多項式函數與時間之線性函數來模擬未知表面熱通量隨位置與時間的變化情形。

    本文將探討p值、未知係數之起始猜測值、量測位置及量測誤差對預測結果的影響。結果顯示,若量測溫度無誤差時,以本文之逆算法可求得良好的表面熱通量與熱傳係數之預測值。p值、量測位置與起始猜測值對預測結果的影響並不顯著。然而,除了長時間之預測值外,對於量測溫度具有誤差時,本文之預測結果甚吻合正確結果,此意味著本文之逆算法具有良好的正確性。

    The study applies the method of Laplace transform and the finite difference method in conjunction with the least-squares methods, the cubic spline and the measured temperature inside the test material to predict the transient heat transfer coefficient on the boundary for the two-dimensional transient inverse heat conduction problems. For the inverse algorithm of the study, the functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain is first divided into p sub-intervals. A series of connected cubic polynomial functions in space and a linear function in time are then introduced to simulate the distribution of the unknown surface heat flux over space and time for the transient inverse heat conduction problem.

    The study investigates into the effects of p value, the initial guesses of the unknown coefficient, the measurement locations and the measurement errors on the estimated results. The results show that when there is no temperature measurement error, a good estimation on the surface heat flux and the heat transfer coefficient can be derived with the inverse algorithm. The estimated results seem to be not very sensitive to the initial guesses, the measurement locations and the p value. Nevertheless, the predictions agree with the correct results perfectly even if there exist measurement errors, except for the long time estimations. It means that the inverse algorithm of the study presents a good accuracy.

    中文摘要          I 英文摘要          Ⅱ 誌謝          Ⅲ 目錄          IV 表目錄          VI 圖目錄           X 符號說明          XⅢ 第一章 前言      1 1-1 研究背景      1 1-2 文獻回顧      2 1-3 研究目的      4 1-4 研究重點與本文架構 6 第二章 理論與數值分析 8 2-1 簡介 8 2-2 理論分析 8 2-2-1 數學模式 8 2-2-2 數值分析 9 第三章 結果與討論 20 3-1 例一 21 3-2 例二 47 第四章 綜合結論與未來展望 71 4-1 綜合結論 71 4-2 未來展望 72 參考文獻 73 自述 76

    1. N.V. Shumakov, A method for the experimental study of the process of heating a solid body, Sov. Phys. Tech. Phys. ( Translated by American Institute of Physiscs) 2, 771-781, 1957.
    2. G. Stolz, Jr, Numerical solution to an inverse problem of heat condition for simple shapes, ASME J. Heat Transfer 82, 20-26, 1960.
    3. J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME paper 62-HT-46, 1962.
    4. J.V. Beck, Surface heat determination using an integral method, Nucl. Eng. Des. , 170-178, 1968.
    5. J.V. Beck, Nonlinear estimation applied the nonlinear inverse heat conduction problem, Int. J. Heat Mass Transfer 13, 703-715, 1970.
    6. J.V. Beck, B. Litkouhi, C.R.St. Clair, Jr, Efficient sequential solution of nonlinear inverse heat conduction problem, Numer. Heat Transfer 5, 275-286, 1982.
    7. J.V.Beck, B.Blackwell, C.R.St.Clair, Jr, Inverse Heat Conduction: Ill-posed Problems, Wiley, New York, 1985.
    8. A.M. Osman, J.V. Beck, Investigation of transient heat transfer coefficients in quenching experiments, ASME J. Heat Transfer 112 843-848, 1990.
    9. J.V. Beck, B. Blackwell, A. Haji-Sheikh, Comparison of some inverseheat conduction method using experimental data, Int. J. Heat Mass Transfer 39, 3649-3657, 1996.
    10. A.M. Osman, J.V. Beck, Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients, J. Thermophysics, vol. 3, 146-152, 1987.
    11. E.M. Sparrow, Haji-Sheikh A. and Lundgern, T. S., The inverse problem in transient heat conduction, J, Appl. Mech., Vol. 86e, pp. 369-375, 1964.
    12. O.M. Alifanov, Solution of an inverse problem of heat conduction by iteration methods, J. of Eng. Phys., Vol. 26, No. 4, pp. 471-476, 1974.
    13. M.N. Özisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentala and Applications, Taylor & Francis, New York, 1990.
    14. H.C. Huang, M.N. Özisik, Conjudate gradient method for determining unknown contact conductance during metal casting, Int. J. Heat Mass Transfer 35, 1779-1786, 1992.
    15. H.C. Huang, M.N. Özisik, Inverse problem of determining unknown wall heat flux in laminar flow through a parallel duct, Numer. Heat Transfer A, 21, 55-70, 1992
    16. H.Y. Li, M.N. Özisik, Identification of the temperature profile in an absorbing, emitting and isotropically scattering medium by inverse analysis, ASME J. Heat Transfer 114, 1060-1063, 1992.
    17. H.T. Chen, S.M. Chang, Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer 33, 621-628, 1990.
    18. H.T. Chen, S.Y. Lin, L.C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer 44, 1455-1463, 2001.
    19. H.T. Chen, S.Y. Lin, H.R. Wang, L.C. Fang, Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer 45, 15-23, 2002.
    20. H.T. Chen, X.Y. Wu, Application of the hybrid method to the estimation of surface conditions from experimental data, Trends in Heat, Mass and Momentum Transfer 8, 103-114, 2002.
    21. H.T. Chen, X.Y. Wu, Y.S. Hsiao, Estimation of surface condition from the theory of dynamic thermal stresses, Int. J. Thermal Sci. 43, 95-104, 2004.
    22. D. Naylor, P. H. Oosthuizen, Evaluation of an inverse heat conduction procedure for determining local convective heat transfer rates, ASME, Inverse Problems in Engineering: Theory and Practice, 125-131,1993.
    23. T.J. Martin, G.S. Dulikravich, Inverse determination of steady heat convection coefficient distributions, ASME J. Heat Transfer 120, 328-334, 1998.
    24. J. Taler, W. Zima, Solution of inverse heat conduction problems using control volume approach, Int. J. Heat Mass Transfer 42, 1123-1140, 1999.
    25. Jian Su, Geoffrey F. Hewitt, Inverse heat conduction problem of estimating time-varying heat transfer coefficient. Numerical Heat Transfer. Part A, 45, 777-789, 2004.
    26. H.T. Chen, X.Y. Wu, Estimation of heat transfer coefficient in two- dimensional inverse heat conduction problems, Numerical Heat Transfer. Part B,50, 375-394, 2006.
    27. J.P. Holman, Experimental Methods for Engineers, McGraw-Hill, New York, 48-143, 2001.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE