簡易檢索 / 詳目顯示

研究生: 江修維
Chiang, Hsiu-Wei
論文名稱: 圓柱向量雷射光束之非線性動態行為研究
Nonlinear dynamics of cylindrical vector laser beams
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 泵源雷射調製圓柱向量光束混沌
外文關鍵詞: modulated pumping laser, cylindrical vector beam, chaos
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由三面鏡系統在c-cut的Nd:YVO4雷射產生圓柱向量偏振,而輸出環形模態上各角度位置之偏振比皆須達10以上。在泵源調製下,訊號由倍週期路徑進入混沌,我們選取環形模態上不同位置比較,可以發現其非線性動態行為與空間分布位置相關。由於圓柱向量偏振可由兩正交線偏振的Laguerre-Gaussian模態,LG01與LG10疊加而成,利用此特性我們予以程式模擬解釋其非線性動態行為與空間的相關性。

    We produce cylindrical vector laser beam in three mirror Nd:YVO4 system. On the output ring mode, the polarization ratio of every part must have the quality 10. When the modulation frequency of pumping laser is comparable with the relaxation oscillation frequency of output laser mode, period-doubling chaos occurs. We compared different parts on the ring mode, observing that the nonlinear dynamics is related with space distribution. Because cylindrical vector beam can be constituted by Laguerre-Gaussian modes, LG01 and LG10 having orthogonal linear polarization, we can explain the relation between nonlinear dynamics and space distribution.

    摘要 I Abstract II 誌謝 VII 目錄 IX 圖目錄 XI 第一章 序論 1 1.1背景 1 1.2研究動機與目標 6 1.3章節概述 7 第二章 原理 8 2.1鬆弛振盪頻率與調製 8 2.1-1鬆弛震盪頻率 8 2.1-2調製泵源雷射 11 2.2圓柱向量光束 12 第三章 圓柱向量雷射光束之非線性動態行為 16 3.1三面鏡圓柱向量雷射光束之非線性動態行為 16 3.1-1實驗架構 16 3.1-2實驗方法 17 3.1-3圓柱向量偏振非線性行為-方位角偏振 21 3.1-4圓柱向量偏振非線性行為-徑向偏振 40 3.2軸稜錐圓柱向量雷射光束之非線性動態形為 56 3.2-1實驗架構 56 3.2-2實驗方法 57 3.2-3軸稜錐圓柱向量偏振非線性行為-方位角偏振 58 3.3泵源調制圓柱向量光束模擬分析 63 第四章 結論與未來展望 66 4.1結論 66 4.2未來展望 66 參考文獻 67

    [1] Qiwen Zhan,” Trapping metallic Rayleigh particles with radial polarization”, OPTICS EXPRESS 12, 3377-3382(2004)
    [2] Lu Huang, Honglian Guo, Jiafang Li, Lin Ling, Baohua Feng,Zhi-Yuan Li,” Optical trapping of gold nanoparticles by cylindrical vector beam”, Optical Society of America(2012)
    [3] V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser
    cutting efficiency,” J. Phys. D 32, 1455–1461 (1999)
    [4] M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed
    radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007)
    [5] J. Fontana and R. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect”, J. Appl. Phys. 54, 4285-4288 (1983)
    [6] D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode
    TE01,” Appl. Phys. Lett. 20, 266–267 (1972)
    [7] Y. Mushiake, K. Matzumurra, and N. Nakajima, “Generation of radially
    polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972)
    [8] Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [9] J. F. Bisson, J. Li, K. Ueda, and Y. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt.Express 14, 3304–3311 (2006)
    [10] Akihiko Ito, Yuichi Kozawa, Shunichi Sato”Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing”, J. Opt. Soc. Am. B, Vol 26,708-712(2009)
    [11] Manasadevi P. Thirugnanasambandam,Yuri Senatsky,Ken-ichi Ueda,” Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal”, OPTICS EXPRESS,Vol 19,1905-1914(2011)
    [12] S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. ,Vol 29, 2234–2239(1990)
    [13] M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21,1948–1950 (1996).
    [14] G. Machavariani, Y. Lumer, I. Moshe,” Efficient extra-cavity generation of radially and azimuthally polarized beams”, OPTICS LETTERS, Vol 32,1468-1470(2007)
    [15]Joseph T.Verdeyen, “Laser electronics’’,3rd,( Prentice ,1995)
    [16] O. Svelto, Principles of Lasers (translated by D. C. Hanna) [Plenum Press, New York, NY, 1998], Chapter 8
    [17]Chang-Hee Lee, Tae-Hoon Yoon, Sang-Yung Shin, ”Period doubling and chaos in a directly modulated laser diode”, Appl. Phys. Lett 46,95-97(1985)
    [18] Dennis G. Hall,” Vector-beam solutions of Maxwell’s wave equation”, OPTICS LETTERS, Vol 21,9-11(1996)
    [19] Qiwen Zhan,” Cylindrical vector beams: from mathematical concepts to applications”, Advances in Optics and Photonics,3-7(2009)
    [20]Ram Oron, Shmuel Blit, Nir Davidson, Asher A.Friesem, ”The formation of laser beams with pure azimuthal or radial polarization”, American Institute of physics(2000)
    [21] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press)(2006)

    下載圖示 校內:2017-08-08公開
    校外:2017-08-08公開
    QR CODE