| 研究生: |
張榮洲 Chang, Jung-Chou |
|---|---|
| 論文名稱: |
抽線道次對銅伸線機械性質的影響 The Influence of Drawing Passes on Mechanical Properties of Copper Wires |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 背向散射電子繞射、優選方位、再結晶 |
| 外文關鍵詞: | EBSD、Preferred Orientation、Recrystallization |
| 相關次數: | 點閱:170 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討純銅經過不同眼模道次(斷面縮減率)連續抽線後的機械性質與破壞行為。 8.0mm SCR純銅銅條分別經八道次、七道次及六道次等三組眼模組合連續抽線至 3.0mm;另外,將八道次眼模組的第一道次眼模換成兩個小減面眼模,探討“skin pass”造成的影響。銅條經不同眼模道次連續抽線後分組取下,再依照ASTM B1的規範,製成標距長度的拉伸試件。試件分別以萬能材料試驗機、微硬度機量測加工硬化的變化,利用OM技術觀察各道次銅線徑向及縱向晶粒變形的演化,以界定抽拉變形後試件之纖維織構生成量,再搭配背向散射電子繞射(EBSD)測量晶粒優選方位,釐清其與機械性質之相關性。最後藉由SEM觀察試件的破壞形貌特徵及機制。
實驗結果顯示,純銅使用不同眼模道次連續抽線,機械性質會受到影響,塑流應力值、微硬度值及楊氏模數(Young´s Modulus)隨著應變量增加而上昇,破斷應變量降低。EBSD量測結果顯示,加工應變量增加,<111>優選方位的比例增加,<100>的比例降低。在塑性變形過程中,<111>方位比例增加會造成塑流應力值、微硬度值及楊氏模數昇高和破斷應變量的降低。但在本實驗中六道次連續抽線的最後一道次( 3.533mm→ 3.000mm),塑流應力值、微硬度值及楊氏模數降低而破斷應變量增加,由其<111>的比例降低可證實產生動態回復及再結晶。此外,再比較八道次與搭配“skin pass”的九道次連續抽線,結果顯示“skin pass”可提高強度,這是由於<111>優選方位的比例較高,但隨著應變量增加,此效應逐漸遞減,相反的在九道次連續抽線的最後一道次( 3.391mm→ 3.000mm),塑流應力值、微硬度值及楊氏模數降低而破斷應變量增加,可由其<111>的比例降低證實產生動態回復及再結晶。不論是經過幾道次的純銅連續抽線,在進行拉伸測試後,皆發現斷口頸縮及斜向破壞之外觀特徵,再配合SEM觀察斷口形貌,發現極多韌窩(dimple)組織,故推斷其破壞模式皆屬延性破壞。且韌窩之大小隨加工量增加而減小。但是在六道次及九道次連續抽線的最後一道次由於動態回復及再結晶,引起加工軟化,因此韌窩反而變大。
In this study, SCR (southwire continuous casting rod) copper rods of diameter 8.0mm are drawn continuously down to copper wires of 3.0mm diameter in drawing processes comprising various numbers of individual passes, 8-passes(reduction area: 21.8%/pass), 6-passes(reduction area: 27.9%/pass) and 7-passes(reduction area: 24.4%/pass). The influence of the number of drawing passes on the mechanical properties and fracture behavior of the copper wires is investigated. The “skin pass” effect is also studied. In order to investigate the mechanical properties, the deformed copper wires are grouped into four sets, and are tested using an universal testing machine and a Vickers hardness gauge to determine the variation of work hardening. The distortion of the copper grains and the fine and fiber textures in the cross-section and longitudinal sections are inspected and observed using OM instrumentation. Meanwhile, the preferred orientation of the grains is measured by the EBSD (electron back-scattered diffraction) technique to establish the relationship between the orientation and the mechanical properties. Finally, the specimens are observed with SEM to identify the fracture characteristics and mechanisms. The current results reveal that the different drawing passes have specific effects on the mechanical properties of the copper wires. Specifically, the flow stress, Vickers hardness and Young’s modulus increase with increasing strain, while the breaking strain decreases. The EBSD measurement indicates that the <111> orientation increases with increasing strain, while the <100> orientation decreases. In the final pass of the 6-passes set, the flow stress, Vickers hardness and Young’s modulus decrease, while the breaking strain increases. Furthermore, it is evident that the copper exhibits dynamic recovery and recrystallization due to a less intense <111>. Comparing the 8-passes and 9-passes drawing sets, it is clear that the “skin pass” enhances the tensile strength due to a higher ratio of <111>. However, this effect is gradually lessened as the strain rate increases. Inversely, in the final pass of the 9-passes set, the flow stress, Vickers hardness and Young’s modulus decrease, while the breaking strain increases. It is evident that the copper develops dynamic recovery and recrystallization due to a less intense <111>.
1. 機械工程手冊3-金屬材料, 五南圖書出版公司, pp. 6-52~6-54, 2002.
2. K. K. Chakaavorty, C. P. Chien, J. M. Cech, M. H. Tanielian and P. L. Young, “High-Density Interconnection Using Photosensitive Polyimide and Electroplated Copper Conductor Lines,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, N o. 1, pp. 200-206, March 1990.
3. K. S. Choi, T. G. Kang, I. S. Park, J. H. Lee and K. B. Cha, “Copper Lead Frame: An Ultimate Solution to The Reliability of BLP Package,” IEEE Transactions on Electronics Packing manufacturing, Vol. 23, No. 1, pp. 32-38, January 2000.
4. K. Toyozawa, K. Fujita, S. Minamide and T. Maeda, “Development of Copper Wire Bonding Application Technology,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, N o. 4, pp. 667-672, December 1990.
5. L. T. Nguyen, D. McDonald, A. R. Danker, Member IEEE and Peter Ng, “Optimization of Copper Wire Bonding on Al-Cu Metallization,” IEEE Transactions on Components, Packing, and Manufacturing Technology-Part A, Vol. 18, No. 2, pp. 423-429, June 1995.
6. R. W. Cochran, “Heat Pump Apparatus Including Earth Tap Heat Exchanger,” Applied Thermal Engineering, Vol. 17, Issue. 5, p. Ⅸ, May 1997.
7. Rainer Koehnlechner, “Copper Separation from Cable Scrap,” Wire Industry, Vol. 61, No. 725, pp. 342-343, May 1994.
8. F. F. Kraft, U. Chakkingal, G. Baker and R. N. Wright, “Effects of Die Angle on Texture and Annealing Response of ETP Copper Wire,” Journal of Materials Processing Technology, Vol. 60, No. 1-4, pp. 171-178, 1996.
9. C. Noseda and R. N. Wright, “The Role of Temperature in Copper Wiredrawing,” Wire Journal International, pp.136-139, August 2000.
10. C. Noseda, “The Role of Temperature in Copper Wire Drawing,” Doctoral Thesis,Rensselaer Polytechnic Institute, Troy, New York, February 2001.
11. S. Vijayakar, “Thermal Influences on Residual Stresses in Drawn Wire - A Finite Element Analysis,” Wire Journal International, pp. 116-119, June 1997.
12. R. N. Wright, “The Role of Back Tension in Die and Pass Schedule Design,” Wire Journal International, pp. 118-122, May 1999.
13. Thomas Maxwell, “Maintenance, Design, Measuring and Pressure Lubrication of The Wiredrawing Die,” Wire Journal International, pp. 72-77, May 2001.
14. R. A. Willby, “Disposal of Spent Copper Drawing Lubricant,” Proceedings of The Annual Convention of The Wire Association International, pp. 110-113, 1990.
15. S. Thiagarajan and S. K. Varma, “Dislocation Cell Structures and Mechanical Properties of Oxygen-Free high-Conductivity Copper During Wire Drawing at Various Speeds,” Metallurgical Transactions A, Vol. 22A, pp. 258-261, January 1991.
16. Aly EI-Domiaty and Sadej Z. Kassab, “Temperature Rise in Wire-Drawing,” Journal of Materials Processing Technology, Vol. 83, pp. 72-83, 1998.
17. Z. L. Zhang and L. Chen, “Study of The Friction Characteristics of Lubricants and Their Affecting Factors During Drawing,” Journal of Materials Processing Technology, Vol. 63, INo. 1-3, pp. 144-147, January 1997.
18. Horace Pops, “Physical Metallurgy of Electrical Copper Conductors,” Nonferrous Wire Handbook, Vol.3, pp. 7-23, Wire Association International.
19. ASTM B224-91, “Standard Classification of Coppers”.
20. “Properties and Selection: Nonferrous Alloy and Pure Metals,” 9th edn, Vol. 2, ASM Metals Handbook, 1979.
21. 賴耿陽,抽線抽管塑性加工,復漢出版社印行,頁 49-55,民國87年2月再刷版。
22. 余煥騰,陳適範,金屬塑性加工學,全華科技圖書股份有限公司,民國83年再版。
23. 鄭鴻彰,“IC封裝金線製程與機械性質之研究”,國立成功大學材料科學及工程學系研究所碩士論文,中華民國九十年七月。
24. J. G. Wistreich, “Investigation of The Mechanics of Wire Drawing, ” Proc. Inst. Mech. Engrs., Vol. 169, pp. 654-665, 1955.
25. A. L. R. Castro, H. B. Campos and P. R. Cetlin, “Influence of Die Semi-Angle on Mechanical Properties of Single and Multiple Pass Drawn Copper,” Journal of Materials Processing Technology, Vol. 60, pp. 179-182, 1996.
26. R. N. Wright, “Secondary Recrystallization in Heavily Drawn ETP Copper Wire,” Metallurgical Transactions A, Vol. 7A, pp. 1891-1896, December 1976.
27. E. Siebel, “Derderzeitige Stand der Erkenntnisse uber Die Mechanischen Vorgange beim Drahtziehen, ” Stahl Und Eisen, Vol. 66-67, pp. 267-287, 1956.
28. D. A. Hughes and N. Hansen, “High Angle Boundaries Formed by Grain Subdivision Mechanisms,” Acta Materialia, Vol. 45, No. 9, pp. 3871-3886, 1997.
29. 王允俊,“純銅經等徑轉角擠型之低溫退火和機械性質”,國立中山大學材料科學研究所碩士論文,中華民國九十年七月。
30. F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena,” Materials Science and Engineering A, Vol. 224, Issue: 1-2, pp. 221-222, March 1997.
31. F. J. Humphreys, “A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on The Stability and Growth of Cellular Microstructures-Ι. The Basic Model,” Acta Metallurgica et Materialia , Vol. 45, p. 4231, 1997.
32. T. Furu, R. Orsund and E. Nes, “Subgrain Growth in Heavily Deformed Aluminum-Experimental Investigation and Modelling Treatment,” Acta Metallurgica et Materialia, Vol. 43, p. 2209, 1983.
33. Siciliano, H. P. Stuwe and A. F. Padiha,“Competition between recovery and recrystallization,” Materials Science and Engineering A, Vol. 333, No. 1-2, pp. 361-367, August 2002.
34. M. Hatherly, A. S. Malin, C. M. Carmichael, F. J. Humphreys and J. Hirsch, “Deformation Processes in Hot Worked Copper and Alpha Brass,” Acta Metallurgica, Vol.
34, No. 11, pp. 2247-2257, November 1986.
35. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol.Ⅲ,ASM, pp. 951, 197
36. R. A. Vandermeer, D. Juul Jensen and E. Woldt, “Grain boundary mobility during recrystallization of copper,” Metallurgical and Materials Transactions A, Vol. 28A, No. 3A, pp. 749-754, March 1997.
37. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd edition, PWS-KENT Publishing Co., Boston, 1992.
38. 林志勝,“純銅在相對低溫之靜態回復”,義守大學材料科學與工程學系碩士論文,中華民國九十二年七月。
39. U. Essmann and H. Mughrabi, “Annihilation of Dislocation During Tensile and Cyclic Deformation and Limits of Dislocation Densities,” Philosophical Magazine A, Vol. 40, No. 6, pp. 731-756, 1979.
40. E. Orowan, “Problems of Plastic Gliding,” Physical Society, Vol. 52, pp. 8-22, 1940.
41. W. D. Nix and J. C. Gibeling, “Mechanisms of Time-Dependent Flow and Fracture of Metals,” ASM Materials Science Seminar on Flow and Fracture at Elevated Temperature, American Society Metals,Metals Park, Ohio, pp. 1-63, 1985.
42. D. P. Dunham and J. C. Gibeling, “Thermally and Mechanically Activated Dislocation Glide: Experimental Results and Theoretical Analysis,” Acta Metallurgica et Materialia, Vol. 41, No. 4, pp. 1173-1182, 1993.
43. J. L. Martin, B. L. Piccolo, T. Kruml and J. Bonneville, “Characterization of Thermally Activated Dislocation Mechanisms Using Transient Test,” Materials Science and Engineering, Vol. 332, No. 1-2, pp. 118-125, 2002.
44. B. Gong, Z. Wang and Z. Wang, “Cyclic Hardening Mechanisms in <001>Copper Single Crystals,” Materials Science and Engineering, Vol. A245, No. 1, pp. 55-63, 1998.
45. T. Hasegawa and K. Okazaki, “Uniform Tensile Elongation Obtained from Experiment and Its Estimation Using Dislocation Dynamics Parameters,” Materials Science and Engineering A, Vol. 297, No. 1-2, pp. 266-271, 2001.
46. R. N. Wright, “Texture Development in Copper Wire,” Wire Journal International, pp.70-73, April 1997.
47. Krishna Rajan and Ronald Petkie, “Microtexture and Anisotropy in Wire Drawn Copper,” Materials Science and Engineering A, Vol. A257, No. 1, pp. 185-197, 1998.
48. H. Park and D. N. Lee, “Effects of Shear Strain and Drawing Pass on The Texture Development in Copper Wire,” Materials Science Forum , Vol. 408-412, No. 1, pp. 637-642, 2002.
49. H. Park and D. N. Lee, “The Evolution of Annealing Texture in 90 Pct Drawn Copper Wire,” Metallurgical and Materials Transactions A, Vol. 34A, No. 3, pp. 531-541, March 2003.
50. R. N. Wright, “Secondary Recrystallization in Heavily Drawn ETP Copper Wire,” Metallurgical Transactions A, Vol. 7A, pp. 1891-1896, December 1976.
51. J. Schamp, B. Verlinden and J. Van Humbeeck, “Recrystallisation at Ambient Temperature of Heavily Deformed ETP Copper Wire,” Scripta Materialia, Vol. 34, No. 11, pp. 1667-1772, 1996.
52. L. Brandao, K. Han, J. D. Embury, R. Walsh, V. Toplosky and S. VanSciver, “Development of High Strength Pure Copper Wires by Cryogenic Deformation for Magnet Applications,” IEEE Transactions on Applied Superconductivity, Vol. 10, No. 1, March 2000.
53. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
54. Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.
55. R. D. Curran, L. Seaman and D.A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” Proceedings of The Society of Photo-Optical Instrumentation Engineers, pp.129-167, 1981.
56. U. S. Lindholm, in Techniques in Metals Research,Vol.5, Part1, R.F Bunshan(ed.), Wiley-Interscience, New York, pp. 199, 1971.
57. D. J. Dingley, Scanning Electron Microscopy, p. 74, 1984.
58. V. Randle, Microtexture Determination and Its Application, Lodon: Inst. Materials, pp. 38-63, 1992.
59. 陳志鵬,“雙相不銹鋼高能束銲件的微觀組織與織構演化
之研究”,國立中山大學材料科學研究所博士論文,中華民國八十九年十二月。
60. E. S. Kayali, M. EI-Sayed and P. Funke, “Deformation Behavior During Drawing of Copper Rods Produced Using Various Processes,” Materials Science and Technology, Vol. 6, pp. 872-883, September 1990.
61. M. M. Arikan, E. S. Kayali and H. Cimenoglu, “Deformation Behavior of Copper Oxide Inclusions During Wire Drawing,” Scandinavian Journal of Metallurgy, Vol. 23, No. 5-6, pp. 190-193, Oct-Dec 1994.
62. N. Inakazu, Y. Kaneno and H. Osaka, “Fiber Texture Formation and Mechanical Properties in Drawing Fine Copper Wire,” Materials Science Forum, Vol. 157-6, No. 1, pp. 715-720, 1994.
63. A. Melander, “Void Growth during Wire Drawing and Tensile Testing of Copper,” Scandinavian Journal of Metallurgy, Vol. 9, No. 6, pp. 267-272, 1980.
64. L. E. Murr and R. D. Flores, “Defects and Failure in Ultra-Fine Copper Magnet Wire,” Scripta Materialia, Vol. 39, No. 4/5, pp. 527-532, 1998.