簡易檢索 / 詳目顯示

研究生: 張人懿
Chang, Jen-Yi
論文名稱: 利用含虛擬時間積分法之緩坡方程式模擬波浪通過透水結構物之變形
Mild-Slope Equation Using Fictitious-Time Integration Method for Simulating Wave Propagation over Porous Structures
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 179
中文關鍵詞: 緩坡方程式虛擬時間積分法透水結構物改良型輻射邊界條件
外文關鍵詞: Mild-Slope Equation, Fictitious-Time Integration Method, Porous Structure, Improved Radiation Boundary Condition
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立含虛擬時間項之透水緩坡方程式,用以模擬波浪通過潛沒式透水結構物之變形效應,稱之為 FTIMEMSE (Fictitious-Time Integration Method Extended Mild-Slope Equation) 模式。文中以線性波理論為基礎,對水深積分將三維問題簡化為二維平面問題,重新推導含有陡變透水底床效應之緩坡方程式 (Mild-Slope Equation,MSE),使控制方程式可以描述陡變地形之透水介質,並使用虛擬時間積分法 (Fictitious Time Integration Method,FTIM) 於控制方程式中,使模式具有抗雜訊 (noise) 的能力。
    本研究提出改良型輻射邊界條件 (Improved radiation boundary condition, IRBC) 處理複雜側向邊界之波浪反射和大角度入射的問題,使模式更能適切描述波浪通過複雜透水地形之變形。對波浪大角度入射邊界的問題,本研究利用廣義型 Padé [2,2] 近似 (generalized Padé [2,2] approximation) 展開邊界條件,用以消除計算領域波能之疊加,同時提高模式估算精度。
    本研究數值模擬結果經與前人試驗及理論解析結果比較,發現模式模擬與試驗及理論結果呈現合理的一致性。文中並進一步分析本研究側向邊界近似展開對計算精度之提昇及其限制。本研究亦於大型平面水槽進行波浪斜向通過斜坡上潛沒式透水與不透水圓柱之試驗,用以校驗數值模式之適用範圍,同時瞭解波浪通過透水結構物能量消散的機制。
    本研究進行模式之參數分析,以及探討高階陡變透項在不同水深變化下的特性分析,從分析結果探討陡變項和模式參數之敏感度。本研究同時進行模式抗雜訊的特性分析,從分析解果證實本研究模式除了可以合理地模擬波浪通過各式結構物的的變形效應外,亦可有效地抑止輸入源所導致的誤差累加現象。

    An integrated numerical model using fictitious time integration method (FTIM) was developed to simulate wave transformation over porous structures across the surf zone including wave shoaling, refraction, diffraction, reflection, breaking and energy dissipation. Based on linear wave theory, the Mild-Slope Equation (MSE) with higher-order rapidly changed porous bed trems was drived. The FTIM converts the elliptic type of MSE into a FTIM extended MSE (FTIMEMSE) which is capable of decreasing the noise due to in correct input resources.
    In this study, the Parabolic Mild-Slope Equation (PMSE) model that developed by Hsu et al. (2008a) was employed to the Improved Radiation Boundary Condition (IRBC) in present model. The reflected waves at the boundary caused by verying water depth are separated from scattering and incident waves in this model. This IRBC makes reflected waves go out from the computational domain. Numerical results show that the model is capable of describing waves propagating over porous structures resting on rapidly changed bottom configuration. The Padé [2,2] approximation is also used to enable a more accurate description of combined wave refraction, diffraction and reflection with large angle indence.
    The model is validated through experimental data and analytical soluctions for wave propagating over permeable structures. The results show that the model predictions are in good agreements. A large-scale experiment was also conducted in a three-dimensional wave basin to generate waves travelling over a permeable submerged circular pile placed on a sloping bottom. The comparison of planary wave height variations demonstrates that the present model is able to produce wave transformation ove porous structure including wave breaking ans energy dissipation.
    Sensibility analysis of influence parameters such as the porocity , the linear friction , relative porous depth and higher-order bottom slope and curvatures terms was conducted. The numerical results suggest a proper selection is required for practical application because different results of parameters could yield different wave patterns. The tested cases also investity the applicability of FTIM used in the model. Typical examples for waves propagating over permeable or impermeable elliptic shoal rest on a horizontal and sloping bottom are also presented. It is concluded that the FTIMEMSE is robust in the numerical stability and capable of tolersting the noise of the measurement.

    誌謝 I 中文摘要 I 英文摘要 (ABSTRACT) II 目錄 IV 圖目錄 VII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 4 1-2-1 波浪通過透水介質之研究 4 1-2-2 虛擬時間積分法之研究 7 1-2-3 波浪大角度入射問題之研究 8 1-2-4 波浪通過陡變底床之研究 9 1-3 本研究組織 10 第二章 控制方程式 13 2-1 虛擬時間積分法擴展透水緩坡方程式 (FTIMEMSE) 13 2-1-1 含陡變透水底床之緩坡方程式 13 2-1-2 含虛擬時間項之透水緩坡方程式 21 2-1-3 能量衰減之模擬 24 2-2 控制方程式之離散化 26 2-3 控制方程式之特性分析 28 第三章 改良型大角度輻射邊界條件 31 3-1 輻射邊界條件 31 3-2 改良型透水輻射邊界條件 35 3-2-1 拋物線型透水模式之建立 36 3-2-2 拋物線型透水模式之驗證 41 3-2-2-1 波浪水平底床通過潛沒式透水結構物 41 3-2-2-2 波浪通過等斜坡透水底床 42 3-3 大角度輻射邊界條件之近似展開 45 3-4 邊界條件之離散化 52 3-5 模式計算流程 57 第四章 模式驗證 61 4-1 波浪通過透水結構物之平面變形試驗結果 61 4-2 波浪斜向入射圓柱之解析比較 66 4-2-1 波浪通過具透水與不透水護階之圓柱 66 4-2-2 波浪通過具五根潛沒式透水圓柱 72 4-3 水工模型試驗 77 4-3-1 試驗設備與配置條件 77 4-3-2 試驗結果比較 80 第五章 模式特性分析 87 5-1 高階陡變透水底床參數之特性分析 87 5-1-1 孔隙率 之影響 87 5-1-2 線性摩擦係數 之影響 95 5-1-3 透水層相對厚度 之影響 102 5-2 模式的抗雜訊能力 109 5-2-1 波浪通過水平底床上之橢圓淺灘 109 5-2-2 波浪斜向通過等斜坡之橢圓淺灘 115 5-2-3 波浪通過透水橢圓淺灘 121 5-3 波浪大角度入射 128 第六章 結論與建議 135 6-1 結論 135 6-2 建議 136 參考文獻 137 附錄A 陡變底床參數之推導 147 附錄B 陡變底床參數副程式之程式碼 171 自 述 177

    1. Arbhabhiramar, A.M., & Dinoy, A.A., 1973. Friction factor and reynolds number in porous media flow. Journal of Hydraulic Division, Vol. 99, pp. 901-911.
    2. Berkhoff, J.C.W., 1972. Computation of combined refraction-diffraction. Proceedings of 13th International Conference on Coastal Engineering, ASCE, pp. 471- 490.
    3. Berkhoff, J.C.W., Booij, N. & Radder, A.C., 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, Vol. 6, pp. 255-279.
    4. Biot, M. A., 1956a. Theory of propagation elastic waves in a fluid staturated porous solid. I: low-frequency range. Journal of the Acoustical Society of America, Vol. 28, pp. 168-178.
    5. Biot, M. A., 1956b. Theory of propagation elastic waves in a fluid staturated porous solid.Ⅱ: higher frequency range. Journal of the Acoustical Society of America, Vol. 28, pp. 179-191.
    6. Booij, N., 1981. Gravity waves on water with non-uniform depth and current. Department Civil Engineering, Delft University of Technique, Delft, The Netherlands, Report No. 81-1.
    7. Butcher, J.C., 2009. Order and stability of generalized Padé approximations. Applied Numerical Mathematics, Vol. 59, pp. 558-567.
    8. Chamberlain, P.G. & Porter, D., 1995. The modified Mild-Slope Equation. Journal of Fluid Mechanics, Vol. 291, pp. 393-407.
    9. Chandrasekera, C.N. & Heung, K.F., 1997. Extended linear refraction-diffraction model. Journal of Waterway, Port Coastal and Ocean Engineering, Vol. 123, pp. 280-286.
    10. Chen, H.B., Tsai, C.P. & Chiu, J.R., 2006. Wave reflection from vertical breakwater with porous structure. Ocean Engineering, Vol. 33, pp. 1705-1717.
    11. Chen, C.Y., Hsu, J.R.C. & Chen, C.W., 2005. Interaction of internal waves with a permeable seabed. Ocean Engineering, Vol. 32, pp. 587-621.
    12. Chen, H.B., Tsai, C.P. & Jeng, C.C., 2007. Wave transformation between submerged breakwater and seawall. Journal of Coastal Research, pp. 1069-1074.
    13. Cruz, E.C. & Chen, Q., 2007. Numerical modeling of nonlinear water waves over heterogeneous porous beds. Ocean Engineering, Vol. 34, pp. 1303-1321.
    14. Cruz, E.C., Isobe, M. & Watanabe, A., 1997. Boussinesq equation for wave transformation on porous beds. Coastal Engineering, Vol. 30, pp. 125-156.
    15. Dalrymple, R.A., Losada, M.A. & Martin, P.A., 1991. Reflection and transmission from porous structures under oblique wave attack. Journal of Fluid Mechanics, Vol. 224, pp. 625-644.
    16. Dalrymple, R.A., Suh, K.D., Kirby, J.T. & Chae, J.W., 1989. Models for very wide-angle water waves and wave diffraction. Part 2 : Irregular bathymetry. Journal of Fluid Mechanics, Vol. 201, pp. 299-322.
    17. Darcy, H., 1856. Les Fontaines Publiques de la Ville de Dijon ("The Public Fountains of the Town of Dijon"), Dalmont, Paris.
    18. Digemans, M. W., 1997. Water Wave Propagation over Uneven Bottoms Part II. World Scientific Publishing Co., Singapore.
    19. Forchheimer, P., 1901. Wasserbewegung Durch Boden, Z. Vere-ines deutscher Ingenieure, Vol. 45, pp.1782-1788.
    20. Furukawa, K. & McDougal, W.G., 1991. Wave Diffraction Due to Trenches and Rrubble. Report No. 166, Department of Civil Engineering Report, Oregon State University, Corvallis, OR.
    21. Goda, Y., 1975. Irregular wave deformation in the surf zone. Coastal Engineering in Japan, Vol. 18, pp. 13-26.
    22. Hsiao, S.C., Liu, P.L.F. & Chen, Y., 2002. Nonlinear water waves propagating over a permeable bed. Proceedings of the Royal Society of London, Vol. A 458, pp. 1291-1322.
    23. Hsiao, S.C., Liu, P.L.F., Hwung, H.H. & Woo, S.B., 2005. Nonlinear water waves over a three-dimensional porous bottom using boussinesq-type model. Coastal Engineering Journal, Vol. 47, pp. 231-253.
    24. Hsu, T.J., Sakakiyama, T. & Liu, P.L.F., 2002. A numerical model for wave motion and turbulence flows in front of composite breakwater. Coastal Engineering, Vol. 46, pp. 25-50.
    25. Hsu, J. R. C., Jeng, D. C. & Tsai, C. P., 1993. Short-crested wave-induced soil response in a porous seabed of infinite thickness. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 78, pp. 553-576.
    26. Hsu, T.W. & Wen, C.C., 2001a. On radiation boundary conditions and wave transformation across surf zone, China Ocean Engineering, Vol. 15, pp. 405-416.
    27. Hsu, T.W. & Wen, C.C., 2001b. A parabolic equation extended to account for rapidly varying topography. Ocean Engineering, Vol. 28, pp. 1479-1498.
    28. Hsu, T.W., Lan, Y.J., Wang, Y.H. & Tsai, C.Y., 2005. Using finhte element method to simulate wave transformation in the surf zone. Journal of Engineering Mechanics, ASCE, Vol. 131, pp. 1214-1217.
    29. Hsu, T.W., Chang, J.Y., Lan, Y.J., Lai, J.W. & Ou., S.H., 2008a A parabolic equation for wave propagation over porous structures. Coastal Engineering, Vol. 55, pp. 1148-1158.
    30. Hsu, T.W., Chang, J.Y. & Lin, T.Y., 2008b. An evolution equation of Mild-Slope equation for water waves propagating over porous media with large angle incidence. Proceedings of 31th International Conference on Coastal Engineering, ASCE, 344-354.
    31. Huang, C.J., Chang, H.H. & Hwung, H.H., 2003. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, Vol. 49, pp. 1-24.
    32. Huang, C.J., Shen, M.L. & Chang, H.H., 2008. Propagation of a solitary wave over rigid porous beds. Ocean Engineering, Vol. 35, pp. 1194-1202.
    33. Isobe, M., 1987. A parabolic equation model for transformation of irregular waves due to refraction, diffraction and breaking. Coastal Engineering in Japan, Vol. 30, pp. 33-47.
    34. Isobe, M., Shiba, K., Cruz, E.C. & Watanabe, A., 1991. On the nonlinear deformation of waves due to submerged permeable breakwaters. Proceedings of Coastal Engineering, JSCE, Vol. 38, pp. 551-555.
    35. Ku, C.Y., Yeih, W.C., Liu, C.S. & Chi, C.C., 2009. Applications of the fictitious time integration method using a new time-like function. Computer Modeling in Engineering & Sciences, Vol. 43, pp. 173-190.
    36. Kirby, J. T., 1986. Higher-order approximations in the parabolic equation method for water waves, Journal of Geophysical Research, Vol. 91, pp. 933-952.
    37. Lan Y.J. & Lee J.F., 2010. On waves propagating over submerged poro-elastic structure. Ocean Engineering, publish online.
    38. Lara, J.L., Losada, I.J. & Liu, P.L.F., 2006. Breaking waves over a mild gravel slope: Experimental and numerical analysis. Journal of Geophysical Research, Vol. 111, C11019.
    39. Lee, T.L., Tsai, C.P. & Jeng, D.S., 2002. Ocean waves propagating over a porous seabed of finite thickness. Ocean Engineering, Vol. 29, pp. 1577-1601.
    40. Lee, C. P., 1987. Wave Interaction with Permeable Structure. Ph. D. Dissertation, Ocean Engineering Program, Department of Civil Engineering, Oregon State University, Corvallis, Oregon, U.S.A..
    41. Lee, J.F. & Lan, Y.J., 2002. On waves propagating over poro-elastic seabed. Ocean Engineering, Vol. 29, pp. 931-946.
    42. Li, B. 1994 An Evolution equation for water waves, Coastal Engineering, Vol. 23, pp. 227-242.
    43. Liu, C.S., 2008a. A fictitious time integration method for two-dimensional quasilinear elliptic boundary value problems. Computer Modeling in Engineering & Sciences, Vol. 33, pp. 179-198.
    44. Liu, C.S., 2008b. A fictitious time integration method for solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues. Computer Modeling in Engineering & Sciences, Vol. 36, pp. 261-286.
    45. Liu, C.S., Atluri, S. N., 2008. A novel time integration method for solving a large system of non-linear algebraic equations. Computer Modeling in Engineering & Sciences, Vol. 31, pp. 71-83.
    46. Liu, C.S. 2009 A fictitious time integration method for solving m-point boundary value problems. Computer Modeling in Engineering & Sciences, Vol. 39, pp. 125-154.
    47. Liu, C.S. & Atluri, S. N., 2009. A fictitious time integration method for the numerical solution of the Fredholm integral equation and for numerical differentiation of noisy data, and its relation to the filter theory. Computer Modeling in Engineering & Sciences, Vol. 41, pp. 243-261.
    48. Liu, L.F., 1973. Damping of water waves over porous bed, Journal of Hydraulics Division, Vol. 99, pp. 2263-2271.
    49. Liu, P. L.F., Lin, P., Cheng, K. A. & Sakakiyama, T., 1999. Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port Coastal and Ocean Engineering, Vol. 125, pp. 322-330.
    50. Losada, I.J., Silva, R. & Losada., M.A., 1996a. 3-D non-breaking regular wave interaction with submerged breakwaters, Coastal Engineering, Vol. 28, pp. 229-248.
    51. Losada, I.J., Silva, R. & Losada., M.A., 1996b. Interaction of non-breaking directional random waves with submerged breakwaters, Coastal Engineering, Vol. 28, pp. 249-266.
    52. Losada, I.J., Patterson, M.D. & Losada., M.A., 1997. Harmonic generation past a submerged porous step. Coastal Engineering, Vol. 31, pp. 281-304.
    53. Madsen, O. S., 1974. Wave transmission through porous structures. Journal of Waterway, Harbors and Coastal Engineering Division, Vol. 100, pp. 169-188.
    54. Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coastal Engineering, Vol. 19, pp. 97-126.
    55. Mèndez, F.J., Losada, I.J & Losada., M.A., 2001. Mean magnitudes induced by regular waves in permeable submerged breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 127, pp. 7-15.
    56. Mizuguchi, M., 1980. An heuristic model of wave height distribution in surfzone. Proceedings of 17th International Coastal Engineering Conference, Cape Town, South Africa, Vol. 1, pp. 278-289.
    57. O’Hare, T.J. & Davies, A.G., 1993. A comparison of two models for surface-wave ropagation over rapidly topography. Applied Ocean Research, Vol. 15, pp. 1-11.
    58. Panchang, V.G., Chen, W., Xu, B., Schlenker, K., Demirbilek, Z. & Okihiro, M., 2000. Effects of exterior bathymetry in elliptic harbor wave models. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126, pp. 71-78.
    59. Porter, D. & Staziker, D.J., 1995. Extensions of the mild-slope equation. Journal of Fluid Mechanics, Vol. 300, pp. 367-382.
    60. Radder, A.C., 1979. On the parabolic equation method for water wave propagation. Journal of Fluid Mechanics, Vol. 95, pp. 159-176.
    61. Rojanakamthorn, S., Isobe, S. M. & Watanabe, A., 1989. A mathematical model of wave transformation over a submerged breakwater. Coastal Engineering in Japan, Vol. 32, pp. 209-234.
    62. Rojanakamthorn, S., Isobe, S. M. & Watanabe, A., 1990. Modeling of wave transformation on submerged breakwater. Proceedings of 22th International Conference on Coastal Engineering, pp. 1060-1073.
    63. Saied, U.M. & Tsanis, I.K., 2004. Improved boundary equations for elliptic water wave models. Coastal Engineering, Vol. 51, pp. 17-34.
    64. Saied, U.M. & Tsanis., I.K., 2005. Improved parabolic water wave transformation model, Coastal Engineering, Vol. 52, pp. 139-149.
    65. Silva, R., Salles, P. & Palacio, A., 2002. Linear waves propagating over a rapidly varying finite porous bed. Coastal Engineering, Vol. 44, pp. 239-260.
    66. Silva, R., Salles, P. & Palacio, A., 2003. Wave interaction with cylindrical porous piles. Ocean Engineering, Vol. 30, pp. 1719-1740.
    67. Silva, R., Losada, M.A. & Salles, P., 2006a. Modelling linear wave transformation induced by dissipative structures—regular waves. Ocean Engineering, Vol. 33, pp. 2150-2173.
    68. Silva, R., Losada, M.A. & Salles, P., 2006b. Modelling linear wave transformation induced by dissipative structures—random waves. Ocean Engineering, Vol. 33, pp. 2174-2194.
    69. Sollitt, C.K. & Cross., R.H., 1972. Wave Transmission Though Permeable Breakwaters, Proceedings of 13th International Conference on Coastal Engineering, ASCE, pp. 1827-1846.
    70. Sommerfeld, A., 1964. Mechanics of Deformable Bodies. Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York.
    71. Steward, D. & Panchang, V., 2000. Improved coastal boundary condition for surface water waves. Ocean Engineering, Vol. 28, pp. 139-157.
    72. Suh, K.D., Lee, C. & Park, W.S., 1997. Generation of waves in Boussinesq models using a source function method, Coastal Engineering, Vol. 32, pp. 91-117.
    73. Ting C.L. & Lin, M.C., 2004. Generation of harmonics by surface waves over permeable submerged breakwaters. Journal of Mechanics, Vol. 20, pp. 57-68.
    74. Ting C.L., Lin, M.C. & Cheng, C.Y., 2004. Porosity effects on surface waves over permeable submerged breakwaters: an experimental investigation. Coastal Engineering, Vol. 50, pp. 213-224.
    75. Tsai, C.P., 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering, Vol. 22, pp. 1-18.
    76. Tsai, C.P. & Lee, T.L., 1995. Standing wave induced pore pressures in a porous seabed. Ocean Engineering, Vol. 22, pp. 505-517.
    77. Tsai, C.P., Chen, H.B. & Hsu, J.R.C., 2001. Calculations of wave transformation across the surf zone. Ocean Engineering, Vol. 28, pp. 941-955.
    78. Tsai, C.P., Chen, H.B. & Lee, F.C., 2006. Wave transformation over submerged permeable breakwater on porous bottom. Ocean Engineering, Vol. 33, pp. 1623-1643.
    79. Tsai, C.P., Chen, H.B. & Jeng, D.S., 2009. Wave attenuation over a rigid porous medium on a sandy seabed. Journal of Engineering Mechanics, Vol. 135, pp. 1295-1304.
    80. Van Gent, M. R. A., 1995. WaveIinteraction with Permeable Coastal Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
    81. Ward, J. C., 1964. Turbulent flow in porous media. Journal of the Hydraulics Division, ASCE, Vol. 90, pp. 1-12.
    82. Yamamoto, T., Koning, H.L., Sellmeiher, H. & Van Hijum, E.V., 1978. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, Vol. 87, pp. 193-206.
    83. Zhao, L., Panchang, V., Chen, W., Demirbilek, Z. & Chhabbra, N., 2001. Simulation of wave breaking effects in two-dimensional elliptic harbor wave models. Coastal Engineering, Vol. 42, pp. 359-373.
    84. 藍元志,2000,「波浪與透水彈性潛堤之互制作用分析」,國立成功大學水利及海洋工程研究所博士論文。
    85. 蔡清標、陳鴻彬、李芳君,2001,「波浪通過斜坡孔隙底床上透水式潛堤之解析」,第二十三屆海洋工程研討會論文集,第 257-264 頁。
    86. 蔡清標、陳鴻彬,2002,「斜坡孔隙彈性介質上波浪變形之研究」,第二十四屆海洋工程研討會論文集,第641-647頁。
    87. 林銘崇、丁肇隆、黃遠芳、許朝敏,2002,「波浪通過透水底床之變形」,第二十四屆海洋工程研討會論文集,第562-569 頁。
    88. 丁肇隆、林銘崇、林其蒼、李芳承,2003,「波浪通過不透水潛堤之高階諧和波生成機制之實驗研究」,第二十五屆海洋工程研討會論文集,第555-562 頁。
    89. 林銘崇、丁肇隆、李芳承、許展豪,2004,「波浪通過透水潛堤之諧和波生成」,第二十六屆海洋工程研討會論文集,第393-400 頁。
    90. 張人懿,2004,「演進型緩坡方程式應用於波浪大角度入射透水介質之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    91. 蔡清標、陳鴻彬、陳寬鴻,2005,「砂質底床上透水潛堤之波浪變化及土壤反應實驗研究」,第二十七屆海洋工程研討會論文集,第581-588頁。

    下載圖示 校內:2011-06-01公開
    校外:2011-06-01公開
    QR CODE