簡易檢索 / 詳目顯示

研究生: 劉博鈞
Liu, Bo-Jyun
論文名稱: 馬赫反射與震波折射流場之參震波理論分析
Three-Shock Theoretical Analyses of Mach Reflections and Shock Refractions
指導教授: 劉中堅
Liu, Jong-Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 馬赫反射震波折射
外文關鍵詞: Mach Reflections, Shock Refractions
相關次數: 點閱:51下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先應用近十年來成大工科所震波管流場實驗室所發表的穩態馬赫反射(SMR)與擬似穩態馬赫反射(PMR)流場之Wuest I/ Wuest II、反射震波前後分界、馮努曼(vN)條件、反射震波強弱分界、反射震波下游音速條件與正常震波反射分離準則,共六項特殊性質解多項式公式,計算、分析與討論這些不同性質理論解方程所得到的多重解,其解於SMR之(M0,Q1)平面上與PMR之(Ms,Qw )平面上所屬之解域。M0,穩態馬赫反射入射震波上游馬赫數;Q1 ,入射震波下游流場轉折角;Ms ,擬似穩態入射震波馬赫數;Qw ,楔形斜平面角。文中應用壓力-轉折角震波極圖解釋高度非線性此種馬赫反射流場中參震波理論解的多樣性。我們說明 之入射震波馬赫波角條件如何區隔SMR流場在(M0,Q1 )解域圖中上述六項特性曲線與 之入射震波馬赫波角條件如何區隔PMR流場在(Ms,Qw )解域圖中之此六項特性曲線,文中並說明這兩種馬赫反射流場之解域圖兩者之間相對應的關係。論文第二部份介紹震波折射流場中所發生的規則震波折射與不規則震波折射現象,在規則震波折射中分別改變入射震波馬赫數及系列變化入射震波波角(由小逐漸變大)以壓力-轉折角震波極圖分析與討論慢-快氣介面與快-慢氣介面可能發生之不同型態的震波折射理論多重解。不規則震波折射部份說明了理論上可能發生的三種不同型態之解。我們以壓力-轉折角震波極圖描述了此三種的不規則震波折射解並依斜震波與膨脹波理論繪出了它們對應的物理流場圖。最後整理出Henderson及其共同作者自1966至1991年間所發表五篇震波折射論文中有錯誤處,並說明我們不同計算與分析的結果。

    This thesis calculates, analyzes and discusses multiply possible solutions of six characteristic steady (SMR) and pseudo-steady (PMR) Mach reflections using derived polynomial equations of special conditions of Wuest I, II, reflected backward/forward - facing separating, von Neumann, reflected strong/weak separating, reflected sonic, and regular reflection detachment criterion by Shock Laboratory of Engineering Science of National Cheng Kung University in the past decade. Analyses and discussions are primarily made on the plane for SMR and on the plane for PMR. M0 , incident shock Mach no. of SMR; Q1 , flow deflection downstream of incident shock; Ms, incident shock propagating shock Mach no. of PMR;Qw , reflecting wedge angle. Pressure-deflection shock polar diagrams are applied for illustrating three-shock theoretical solutions multiplicities of highly nonlinear steady and pseudo-steady Mach reflections. Incident shock Mach angle conditions, of SMR and of PMR, separating mathematically and physically different theoretical solution regions on the plane of SMR and plane of PMR are explained. In the second part of this work, regular and irregular shock refractions phenomena are discussed. By systematically varying incident shock Mach number and then, the incident shock angle from small to large, we analyze multiply possible solutions of both Slow-Fast and Fast-Slow regular shock refractions using oblique shock theory based pressure-deflection shock polar diagrams. For irregular shock refractions, three different theoretical solutions patterns discussed by Henderson & Macpherson (1968) are studied and examined. Theoretical oblique shock polar analyses of these three types of irregular shock refractions and their corresponding physical wave and deflection flow configurations are made and graphed, respectively. Finally, mistakes in shock refraction works by Henderson (1966), Henderson (1967), Henderson & Macpherson (1968), Abe-El-Fattah & Henderson (1978), Henderson et al. (1991) are reported and corrected calculations along with analyses and preliminary conclusions are then provided.

    摘要………………………………………………………………..….I ABSTRACT…………………………………………………………..III 致謝……………………………………………………………….…..V 目錄…………………………………………………………………...VI 圖目錄………………………………………………………...………VIII 符號說明……………………………………………………………...XIII 第一章 緒論………………………………………………………….1 第二章 馬赫反射參震波理論....……..……………………………...6 2-1馬赫反射流場現象與描述此現象的傳統參震波理論…………..………….6 2-2馬赫反射流場壓力、轉折角震波極分析方法………………….…………..13 2-3穩態馬赫反射流場與擬似穩態馬赫反射流場兩者之間的轉換...................19 2-4馬赫反射流場中六種主要的不同性質解說明……………………………...21 2-4-1 Wuest (Triple-root I,II)條件………………………………………………...21 2-4-2反射震波前後分界條件…………………………………………………....23 2-4-3馮努曼(vN)條件或稱機械平衡條件……………………………………….24 2-4-4反射震波下游音速 條件……………………………………………..25 2-4-5反射震波強弱分界條件…………………………………………………….26 2-4-6 正常震波分離準則(RR Detach)條件……………………..………………..27 第三章 理想氣體馬赫反射流場各不同性質理論多重解之計算與討論………………………………………………………………………28 3-1 穩態馬赫反射流場六個特殊性質理論解公式計算暨其結果之分析與討 論………………………………………………………………………….……..32 3-2在( , )平面上區分SMR六個特殊解域曲線之分析…………….……....45 3-3 擬似穩態馬赫反射流場六個特殊性質理論公式的計算、分析與討論暨其 界定之參震波理論解域…………………………………………...………….51 3-4 擬似穩態馬赫反射流場六個特殊性質公式計算結果於( , )平面上區分不同性質解域分析…………………………………….…………………………..…….68 第四章 理想氣體震波折射之定性分析………….……………..…….91 4-1 Slow-Fast(慢-快)氣體介面之規則震波折射分析…………………..………….96 4-2 Fast-Slow(快-慢)氣體介面之規則震波折射分析………………..…….………103 4-3震波折射現象中不規則折射類型分析………………………………..……….121 第五章 結論…………………………………………………………….………...130 參考文獻……………………………………………………..…………………….134

    Abd-El-Fattah, A. M. & Henderson, L. F. & Lozzi, A., (1976), “Precursor Shock Waves at a Slow-Fast Gas Interface,” J. Fluid. Mech., Vol. 76, part 1, pp. 157-176.
    Abd-El-Fattah, A. M. & Henderson, L. F., (1978) “Shock Waves at a Slow-Fast Gas Interface,” J. Fluid Mech., Vol. 89, part 1, pp. 79-95.
    Ames Aeronautical Lab. Rep., (1953), “AMES Equations, Tables and Charts for Compressible Flow,” NASA, NO. 1135.
    Ben-Dor, G. & Takayama, K., (1985), “The Inverse Mach Reflection,” AIAA Journal, Vol. 23, No. 12, pp. 18553-1855.
    Ben-Dor, G. & Takayama, K., (1992), “The Phenomena of Shock Wave Reflection-A Review of Unsolved Problems and Future Research needs,” Shock Waves, Vol. 2, 211-223.
    Bleakney,W. and Taub, A.H., (1949), “Interaction of shock waves” Rev.Mod. Phys.,Vol.21.
    Henderson, L. F. & Colella, P. & Puckett, E. G., (1991), “On the Refraction of Shock Waves at a Slow-Fast Gas Interface,” J. Fluid Mech., Vol. 224, pp. 1-27.
    Henderson, L. F., (1967), “On Expansion Waves Generated by the Refraction of a Plane Shock at a Gas Interface,” J. Fluid Mech., Vol. 30, part 2, pp. 385-402.
    Henderson, L. F., (1964), “On the Confluence of Three Shock Waves in a Perfect Gas,” Aero. Quart., 15, 181-197.
    Henderson, L. F., (1987), “Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew. Math. Mech., Vol. 67, 1-14.

    Henderson, L. F., (1966), “The Refraction of a Plane Shock Wave at a Gas Interface,” J. Fluid Mech., Vol. 26, part 3, pp. 607-637.
    Liepmann, H. W. & Roshko, A., (1957), “Elements of Gasdynamics,” Wiely.
    Liu, J.J., (1996), “Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332
    Liu, J.J. & Chuang, C.C. & Chuang, H.W., (2002), “Multiple Solutions of Steady Mach Reflections in Monatomic Gases,” The 19th Nat’1 Conference on Mechanical Engineering, Yun-Lin, No. A5-004.
    Liu, J.J., (2003), “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections in Diatomic Gases,” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 120-127.
    Liu, J.J., (2005), “Theoretical Expressions for Limiting Conditions Separating Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 29th National Conference on Theoretical and Appolied Mechanics, Hsinchu, Taiwan, 1-8.
    Liu, J.J., (2006 a), “A Clarification to Misconceptions Regarding the von Neumann Paradox of Weak Mach Reflections, ” The 26th International Symposium on Shock Waves, Abstract p. 145, Germany, Gottingen.
    Liu, J.J., (2006 b), “A Clarification to Misconceptions of Pseudo-Steady Mach Reflections,” The 26th International Symposium on Shock Waves, Abstract p. 51, Germany, Gottingen.
    Liu, J.J., (2008), “Theoretical Formulas Characterizing Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 18th International Shock Interaction Symposium, Rouen, France, 1-4.
    Liu, J.J., (2009), “Theoretical Formulas Characterizing Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 27th International Symposium on Shock Waves, Abstract, St.-Petersburg, Russia.
    Mach, E., (1878), “Uber einige mechanische Wirkungen des elekctrischen Funkens,” Akademie der Wissenschaften Wien, Vol. 77, No. 2, 819-838.
    Mathematica Pro. V5.1., Wolfram Research., 100 Trade Center Drive Champaign, IL 61820 USA., www. Wolfram. com
    von Neumann, J., (1943), “Refraction, Interaction and Reflection of Shock Waves,” NAVORD Rep. 203-45. Navy Dept., Bureau of Ordinance, WASHINGTON, DC.
    李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析: 」,國立成功大學工程科學系碩士論文,台南 (2003)。
    曾國勇,「多原子分子理想氣體擬似穩態馬赫反射震波理論之多重解分析」,國立成功大學工程科學系碩士論文,台南 (2005)。
    黃致豪,「穩態馬赫反射三震波理論之流場性質分析」,國立成功 大學工程科學系碩士論文,台南 (2006)。
    鄭其昌,「多原子分子理想氣體擬似穩態馬赫反射之三震波點路徑角理論多重解分析」,國立成功大學工程科學系碩士論文,台南 (2007)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE