簡易檢索 / 詳目顯示

研究生: 蕭如君
Hsiao, Ru-Jun
論文名稱: 無動力船隻之漂流估測方法
Position Estimation Methods for Powerless Ocean Surface Vessels
指導教授: 陳永裕
Chen, Yung-Yu
黃明志
Huang, Min-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 59
中文關鍵詞: 模糊解海流模型位置估測擴展性卡爾曼濾波器
外文關鍵詞: fuzzy solution, ocean current model, position estimation, Extend Kalman filter
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海上氣候瞬息萬變,如何在海難發生後判斷並搜尋船隻位置是海上救援之首要課題。經統計,海上之事故發生頻率最高的船舶類型為漁業用船舶,其中機械故障、失火以及碰撞在發生事故種類中之發生機率即占總體一半以上,發生以上事故後之船隻將失去動力進行漂流,或被迫失去通訊能力進而無法求援。故本篇論文主要針對上述種類船隻,藉由求解流體動態方程式建構一套漂流估測方法,以增加海上救援救難之強度。
    此漂流估測方法中,首先使用適應性模糊理論對具有相當複雜之偏微分特性流體動態方程組求解,經由實際量測之海流數據校正,利用適應性模糊理論兼具之內插特性求出並建立台灣周圍海域之海流模型。其後,根據船隻航行之行為建構出一組狀態空間表示式,根據動力學分析方法建立並設計回授線性化控制方法,模擬失去動力船隻在海上隨波逐流的實際情況。最後使用擴展性卡爾曼濾波器進行估測,進而得出失去動力船隻一段時間後之預估落點。此篇論文針對約二百公斤之小型船隻實行漂流估測方法驗證,分別進行長時間及短時間之漂流估測,估測誤差分別為4.5±3% 公里及 0.07±30% 公里,並討論若事故發生時當月海流數據缺失,以前一年之前後月份平均海流數據進行漂流估測之準確度。

    In this paper, a position estimation method for precisely tracing the trajectory of ocean surface vessels under the situation of powerless and losing communication ability via the aid of the ocean current solution and nonlinear estimation method is proposed. The method procedure and contributions for the estimation is addressed as follows:
    First, a group of momentum equations which is not easy to find the exact solution because of its complexity is proposed for ocean current modeling. The solution of these equations will be accurately solved by one new derived fuzzy approximation technology via a set of practical current observed data around Taiwan. The main contribution of this new modeling method can offer researchers one more useful and accurate ocean current history.
    Second, a model formulated in state-space form for describing the drifting behavior of monitored ocean surface vessels is identified according to analysis the drifting behavior in practical situation from mechanical viewpoint.
    Third, based on the above solution of ocean current and the identified model described the drifting behavior of monitored ocean surface vessel, a position estimation method realized with Extend Kalman filter are developed for the powerless drifting vessels, which are driven by the ocean current is investigated. The simulation errors are 4.5±3% kilometers and 0.07±30% kilometers which simulate via real incidents for two days and two hours, respectively, and discussing the accuracy of drift estimation via using the different ocean data of different months.

    中文摘要 I ABSTRACT II 誌謝 III CONTENT IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Research motivations 1 1.2 Literature review 1 1.3 Formulation of research method 3 CHAPTER 2 OCEAN CURRENT MODELING 4 2.1 Problem formulation 4 2.1.1 Description of the ocean current model 4 2.1.2 Description of the fuzzy solution 6 2.2 Solution finding methodology via fuzzy logic systems 7 2.2.1 Approximation error bound between the exact solution and the proposed fuzzy solution of NSE 7 2.2.2 Adaptive Law of the adjustable parameters 9 2.3 Simulations of ocean current model 12 CHAPTER 3 POSITION ESTIMATION DESIGN 20 3.1 Mathematical model of OSV 20 3.2 Ocean flow tracking design 24 3.3 Position estimation of powerless OSV via Extend Kalman filter 25 3.3.1 Linearization of the nonlinear OSV model 25 3.3.2 Discretization of the nonlinear OSV model 28 3.3.3 The Extend Kalman filter 28 CHAPTER 4 SIMULATION RESULTS 30 4.1 Model parameters of OSV 30 4.2 Position estimating of powerless OSV with respect to practical incidents 31 CHAPTER 5 CONCLUSIONS 52 REFERENCES 53 APPENDIX 56

    [1] V. W. Ekman, “On the influence of the Earth’s rotation on ocean currents”, Arkiv foer Matematik Astronomi och Fysik 2, No. 11, pp. 1-52, 1905.
    [2] A. D. Jenkins, “A Lagrangian model for wind- and wave-induced near surface currents”, Coastal Engineering, Vol. 11, No. 5-6, pp. 513–526, Dec. 1987.
    [3] A. D. Jenkins, “The use of a wave prediction model for driving a near surface current model”, Deutsche Hydrographische Zeitschrift, Vol. 42, No. 3-6, pp. 133–149, May. 1989.
    [4] J.B. Song, “The effects of random surface waves on the steady Ekman current solutions”, Deep Sea Research Part I: Oceanographic Research Papers, Vol. 56, No. 5, pp. 659–671, May. 2009.
    [5] W. Perrie, C. L.Tang, Y.Hu, and B. M. Detracy, “The Impact of Waves on Surface Currents,” Journal of Physical Oceanography, Vol.33, pp. 2126-2140, Mar.2003.
    [6] J. B. Song and Y. S. Huang, “An approximate solution of wave-modified Ekman current for gradually varying eddy viscosity”, Deep-Sea Research I, Vol. 58, pp. 668–676, 2011.
    [7] J. T. Kohut, H. J. Roarty, and S. M. Glenn, “Characterizing Observed Environmental Variability with HF Doppler Radar Surface Current Mappers and Acoustic Doppler Current Profilers: Environmental Variability in the Coastal Ocean,” IEEE Journal Of Oceanic Engineering, Vol. 31, No. 4, pp. 876-884, Oct. 2006.
    [8] S. Cosoli, M. Gacic, A. Mazzoldi, “Surface current variability and wind influence in the northeastern Adriatic Sea as observed from high-frequency (HF) radar measurements,” Continental Shelf Research, Vol. 33, pp. 1-13, Feb. 2012.
    [9] P. Yu, A. L. Kurapov, G. D. Egbert, J. S. Allen and P. M. Kosro, “Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon,” Ocean Modelling, Vol. 49-50, pp. 86-104, Jun. 2012.
    [10] M. Rixen, E. Ferreira-Coelho and R. Signell, “Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas,” Journal of Marine Systems, Vol. 69, No. 1-2, pp. 86-98, Jan. 2008.
    [11] A. Melsom, F. Counillon, J. H. LaCasce and L. Bertino, “Forecasting search areas using ensemble ocean circulation modeling,” Ocean Dynamics, Vol. 62, No.8, pp. 1245-1257, Aug. 2012.
    [12] P. l. Richardson, “Drifting in the wind: leeway error in shipdrift data,” Deep Sea Research Part I: Oceanographic Research Papers, Vol. 44, No. 11, pp. 1877-1903, Nov. 1997.
    [13] Y. Ou, “Drift Model for Ship out of Control at Sea,” Control and Decision Conference, 2011 Chinese, Mianyang, pp. 550-554, May. 2011.
    [14] Y. Y. Chen, Y. T. Chang and B. S. Chen, “Fuzzy Solutions to Partial Differential Equations: Adaptive Approach,” IEEE Transactions on Fuzzy Systems, Vol. 17, No. 1, pp. 114-127, Feb. 2009.
    [15] B. Deremble, A. M. Hogg, P. Berloff and W.K. Dewar, “On the application of no-slip lateral boundary conditions to ‘coarsely’ resolved ocean models,” Ocean Modelling, Vol. 39, No. 3-4, pp. 411-415, May. 2011.
    [16] K. Klingbeil and H. Burchard, “Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model,” Ocean Modelling, Vol. 65, pp. 64-77, May. 2013.
    [17] J. H. LaCasce, “Atmosphere-Ocean Dynamics,” Department for Geosciences, Oslo, Norway, 2011.
    [18] L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis”, Englewood Cliffs, Prentice-Hall, NJ, USA, 1994.
    [19] L. X. Wang, “A course in fuzzy systems and control. Upper saddle River”, Prentice Hall, NJ, USA, 1997.
    [20] D. Kincaid and W. Cheney, “Numerical Analysis” A Division of Wadsworth, Belmont, California, 1991.
    [21] A. Kang and B. Zhu, “Wave–current interaction with a vertical square cylinder at different Reynolds numbers,” Journal of Modern Transportation, Vol. 21, No. 1, pp. 47-57, Jun. 2013.
    [22] T. I. Fossen, “Guidance and Control of Ocean Vehicles”, John Wiley and Sons, Sussex, England, 1994.
    [23] Z. Gajic, “Linear Dynamic Systems and Signals,” Prentice Hall, 2003.
    [24] C. Tang, W. Perrie, A. D. Jenkins, B. M. DeTracey, Y. Hu, B. Toulany, and P. C. Smith, “Observation and modelling of surface currents on the Grand Banks,” Journal of Geophysical Research: Oceans, Vol. 112, No. 10, pp. 1-16, Oct. 2007.
    [25] T. N. Chu and C. H. Tsai, “Drift Track Simulation for Past Marine Incidents Using SARMAP,” IEEE Ocean Conference, 2010, Sydney, NSW, May. 2010.
    [26] T. M. Apostol, Mathematical Analysis. Reading, MA: Addison-Wesley, 1974.
    [27] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [28] S. S. Saatry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE