| 研究生: |
劉展佑 Liu, Chan-Yu |
|---|---|
| 論文名稱: |
以TOPSIS方法探索半導體封裝測試廠之生產規劃系統選擇應用 – 以N公司為例 A TOPSIS method used in selecting production planning system for Semiconductor Assembly and Test Factory - N Case Company |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 半導體封裝測試 、生產規劃 、生產規劃系統 、多準則決策分析方法 |
| 外文關鍵詞: | Semiconductor backend manufacturing, Production planning and control, TOPSIS |
| 相關次數: | 點閱:46 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討N個案公司,一家半導體封裝測試公司,評選最適合其生產規劃需求的系統服務廠商。考慮到這項重要決策,研究採用了TOPSIS方法(Technique for Order Preference by Similarity to Ideal Solution),這是一種多準則決策分析方法,能夠幫助企業在多個標準下選擇最佳方案。首先,研究收集了相關資料,包括N個案公司的資訊、製造、供應鏈管理、採更等部門的專業經理人對於生產規劃系統的各項指標評估。接著,使用TOPSIS方法對這些廠商進行評估,藉由比較它們與理想解和最差解之間的相似度,以確定最佳選擇。研究結果顯示,基於綜合考慮各種標準和需求,特定系統服務廠商在生產規劃系統方面表現最為優越。這項分析提供了N個案公司在選擇系統服務廠商方面的重要參考,有助於提升其生產規劃效率與品質,以及推動業務的可持續發展。總括而言,本研究利用TOPSIS方法成功幫助N個案公司有效評選出最適合其需求的系統服務廠商#3,為半導體封裝測試公司的生產規劃決策提供了實質性的支持與指導。
This thesis delves into the strategic process undertaken by the N-Company, a semiconductor backend manufacturer, to select an optimal production planning system solution provider. Using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, the study develops a tailored evaluation framework. This framework assesses potential providers based on crucial criteria such as technological compatibility, cost-effectiveness, scalability, and adaptability, aiming to guide the N-Company towards an informed decision. By meticulously analyzing solution providers within the semiconductor backend manufacturing sector, this research contributes practical insights into applying the TOPSIS method. It aims to facilitate not only the N-Company's decision-making but also to provide guidance for similar industry entities navigating the complexities of selecting production planning system solution providers. Ultimately, this study concludes that Solution#3 is the most proper solution and strives to enhance decision-making processes, enabling companies to optimize their selection strategies and bolster efficiency in the semiconductor backend manufacturing domain.
Aslan, B., Stevenson, M., & Hendry, L. C. (2012). Enterprise resource planning systems: An assessment of applicability to make-to-order companies. Computers in Industry, 63(7), 692-705.
Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American Journal of Information Systems, 1(1), 31-43.
Bitran, G. R., & Tirupati, D. (1993). Hierarchical production planning. Handbooks in Operations Research and Management Science, 4, 523-568.
Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069.
Buestán, M., Van Landeghem, H., & López, M. (2019). A framework for the selection or design of production planning and control systems: a case of application. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology.
Chae, B. (2009). Developing key performance indicators for supply chain: an industry perspective. Supply Chain Management: An International Journal, 14(6), 422-428.
Chien, C. F., Chen, Y. H., & Lo, M. F. (2020). Advanced quality control (AQC) of silicon wafer specifications for yield enhancement for smart manufacturing. IEEE Transactions on Semiconductor Manufacturing, 33(4), 569-577.
Chien, C. F., & Hsu, C. Y. (2013). Data mining for optimizing IC feature designs to enhance overall wafer effectiveness. IEEE Transactions on Semiconductor Manufacturing, 27(1), 71-82.
Felfel, H., Ayadi, O., & Masmoudi, F. (2017). Pareto optimal solution selection for a multi-site supply chain planning problem using the VIKOR and TOPSIS methods. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 8(3), 21-39.
Järvenpää, E., Lanz, M., Tokola, H., Salonen, T., & Koho, M. (2015). Production planning and control in Finnish manufacturing companies–Current state and challenges. In Proceedings of the 25th International Conference on Flexible Automation and Intelligent Manufacturing.
Joppen, R., von Enzberg, S., Gundlach, J., Kühn, A., & Dumitrescu, R. (2019). Key performance indicators in the production of the future. Procedia CIRP, 81, 759-764.
Lee, W. J., & Ong, S. C. (2010, February). Learning from small data sets to improve assembly semiconductor manufacturing processes. In 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE) (Vol. 2, pp. 50-54). IEEE.
Lupeikiene, A., Dzemyda, G., Kiss, F., & Caplinskas, A. (2014). Advanced planning and scheduling systems: modeling and implementation challenges. Informatica, 25(4), 581-616.
Lin, J. T., & Chen, C. M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100-114.
Li, Z., Xu, W., Shi, H., Zhang, Q., & He, F. (2019). Multiobjective optimization model of production planning in cloud manufacturing based on TOPSIS method with combined weights. Complexity, 2019, 1-15.
McKay, K. N., & Wiers, V. C. (2003). Planning, scheduling and dispatching tasks in production control. Cognition, Technology & Work, 5, 82-93.
Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285.
Misra, S. K., & Ray, A. (2013). Integrated AHP-TOPSIS model for software selection under multi-criteria perspective. In Driving the Economy through Innovation and Entrepreneurship: Emerging Agenda for Technology Management (pp. 879-890). Springer India.
Mönch, L., Uzsoy, R., & Fowler, J. W. (2018). A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation. International Journal of Production Research, 56(13), 4524-4545.
Mönch, L., Uzsoy, R., & Fowler, J. W. (2018). A survey of semiconductor supply chain models part III: master planning, production planning, and demand fulfilment. International Journal of Production Research, 56(13), 4565-4584.
Olhager, J., & Rudberg, M. (2002). Linking manufacturing strategy decisions on process choice with manufacturing planning and control systems. International Journal of Production Research, 40(10), 2335-2351.
Öztürk, C., & Ornek, A. M. (2014). Operational extended model formulations for advanced planning and scheduling systems. Applied Mathematical Modelling, 38(1), 181-195.
Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311- 332.
Papathanasiou, J., & Ploskas, N. (2018). Multiple criteria decision aid. Methods, Examples and Python Implementations, 136, 131.
Geng, H. (2018). Semiconductor Manufacturing Handbook. 2nd ed, McGraw-Hill, Inc.
Stadtler, H. (2015). Production planning and scheduling. Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies, 195-211.
Uzsoy, R., Lee, C. Y., & Martin-Vega, L. A. (1992). A review of production planning and scheduling models in the semiconductor industry part I: system characteristics, performance evaluation and production planning. IIE Transactions, 24(4), 47-60.
Uzsoy, R., Lee, C. Y., & Martin-Vega, L. A. (1994). A review of production planning and scheduling models in the semiconductor industry part II: Shop-floor control. IIE Transactions, 26(5), 44-55.
Uzsoy, R., Fowler, J. W., & Mönch, L. (2018). A survey of semiconductor supply chain models Part II: demand planning, inventory management, and capacity planning. International Journal of Production Research, 56(13), 4546-4564.
Wu, K., & Shen, Y. (2020). A unified view on planning, scheduling and dispatching for a factory. Advanced Engineering Informatics, 46, 101188.
Zhou, H., Benton Jr, W. C., Schilling, D. A., & Milligan, G. W. (2011). Supply chain integration and the SCOR model. Journal of Business Logistics, 32(4), 332-344
Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404.