| 研究生: |
陳政忠 Chen, Cheng-Chung |
|---|---|
| 論文名稱: |
呼吸式質子交換膜燃料電池堆散熱系統配置之研究 Studies on Cooling System Configuration of Air-Breathing PEMFC Stack |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 質子交換膜燃料電池 、呼吸式 、熱管理 、風扇配置 、溫度分布均勻性 |
| 外文關鍵詞: | PEMFC, Air-Breathing, Thermal Management, Fan Configuration, Temperature Distribution Uniformity |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於呼吸式質子交換膜燃料電池將空氣來源及散熱系統合而為一,因此具有減少重量、體積及耗電量等優勢,不過其受限於較差的散熱能力,容易造成溫度分布不均勻的現象。為了使呼吸式質子交換膜燃料電池溫度分布均勻性的提升,並同時保有較簡單的周邊系統,本研究欲透過風扇配置的改變,降低其溫度分布的不均勻性,並探討在不同風扇配置下之性能表現。
本研究使用反應面積為155 cm2之42級呼吸式質子交換膜燃料電池堆作為測試對象,實驗首先探討電池堆平均溫度、氫氣露點溫度對電池堆性能之影響。當得到最佳性能表現之參數後,將此組操作參數固定,以進行後續不同風扇配置對於燃料電池堆性能及溫度分布影響之研究。實驗結果顯示,當燃料電池操作在60A,意即額定電壓下運行時,6個風扇配置與傳統的1個風扇配置相比,除了提高20%的溫度分布均勻性以延長燃料電池堆的使用壽命之外,風扇消耗功率比例的降低也使燃料電池系統具有更高的淨功率。因此,對於本次研究中使用的42級呼吸式質子交換膜燃料電池堆而言,在熱管理和系統效率上,6個風扇配置為最合適的散熱系統選擇。
Because the air-breathing proton exchange membrane fuel cell (PEMFC) combines the air supply and the cooling system, it has the advantages of reducing weight, volume, and power consumption. However, it’s limited by a lower cooling capacity, and is likely to cause uneven temperature distribution. In order to improve the temperature distribution uniformity of the air-breathing PEMFC and also to remain a simpler balance of plant (BOP) system, this research aims to improve the temperature distribution uniformity through the modification of the fan configuration. Additionally, the performance of air-breathing PEMFC with different fan configurations are discussed as well.
In the first part of this research, the influence of some operating parameters, such as the average temperature of the stack and the hydrogen dew point temperature, on the stack performance were studied. After parameters with the best performance are obtained, the operating parameters are fixed for subsequent studies on the effects of different fan configurations. The results show that the 6-fan configuration not only has a 20% more uniform temperature distribution than the traditional one-fan configuration, which is expected to be helpful for the lifetime extension of the stack, but also improves the net power of fuel cell system, as the fuel cell is operated at 60 A and a rated voltage. As a result, for the 42-cell air-breathing PEMFC stack used in this experiment, the most suitable configuration is 6-fans for both the thermal management and the system efficiency.
[1] A. Veziroglu and R. MacArio, “Fuel Cell Vehicles: State of the Art with Economic and Environmental Concerns,” International Journal of Hydrogen Energy, vol.36, no.1, pp.25-43, 2011.
[2] https://georgewbush-whitehouse.archives.gov/infocus/technology/economic_policy200404/chap2.html#.
[3] https://ssl.toyota.com/mirai/fcv.html.
[4] Y. Nonobe, “Development of the Fuel Cell Vehicle Mirai,” IEEJ Transactions on Electrical and Electronic Engineering, vol.12, no.1, pp.5-9, 2017.
[5] T. Yoshida, and K. Kojima, “Toyota MIRAI Fuel Cell Vehicle and Progress toward a Future Hydrogen Society,” Electrochemical Society Interface, vol.24, no.2, pp.45-49, 2015.
[6] T. Yoshida, K.Kojima, T.Yokoyama, and S. Sekine, “Development Trends and Popularization Scenario for Fuel Cell Vehicle,” ECS Transactions, vol.41, no.1, pp.3-12, 2011.
[7] B. K. Hong, and S. H. Kim, “Recent Advances in Fuel Cell Electric Vehicle Technologies of Hyundai,” ECS Transactions, vol.86, no.13, pp.3-11, 2018.
[8] “Horizon Launches Hycopter Fuel Cell Multirotor UAV,” Fuel Cells Bulletin, vol.2015, no.6, pp.4, 2015.
[9] J. Dutczak, “Compressed Hydrogen Storage in Contemporary Fuel Cell Propulsion Systems of Small Drones,” IOP Conference Series: Materials Science and Engineering, vol.421, no.4, 2018.
[10] Houchang Pei, Jun Shen, Yonghua Cai, Zhengkai Tu, Zhongmin Wan, Zhichun Liu, and Wei Liu, “Operation Characteristics of Air-Cooled Proton Exchange Membrane Fuel Cell Stacks under Ambient Pressure,” Applied Thermal Engineering, vol.63, no.1, pp.227-233, 2014.
[11] G. Zhang, and S. G. Kandlikar, “A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks,” International Journal of Hydrogen Energy, vol.37, no.3, pp.2412-2429, 2012.
[12] K. P. Adzakpa, J. Ramousse, Y. Dubé, H. Akremi, K. Agbossou, M. Dostie, A. Poulin, and M. Fournier, “Transient Air Cooling Thermal Modeling of a PEM Fuel Cell,” Journal of Power Sources, vol.179, no.1, pp.164-176, 2008.
[13] S. G. Kandlikar, and Z. Lu, “Thermal Management Issues in a PEMFC Stack – A Brief Review of Current Status,” Applied Thermal Engineering, vol.29, no.7, pp.1276-1280, 2009/05/01/, 2009.
[14] Jinfeng Wu, Stefano Galli, Ivano Lagana, Afonso Pozio, Giulia Monteleone, Xiao Zi Yuan, Jonathan Martin, and Haijiang Wang, “An Air-Cooled Proton Exchange Membrane Fuel Cell with Combined Oxidant and Coolant Flow,” Journal of Power Sources, vol.188, no.1, pp.199-204, 2009.
[15] 洪偉峰, “水冷式質子交換膜燃料電池堆設計及性能測試,” 航空太空工程學系碩士論文, 國立成功大學, 台南市, 2013.
[16] A. de las Heras, F. J. Vivas, F. Segura, and J. M. Andújar, “How the BoP Configuration Affects the Performance in an Air-Cooled Polymer Electrolyte Fuel Cell. Keys to Design the Best Configuration,” International Journal of Hydrogen Energy, vol.42, no.17, pp.12841-12855, 2017.
[17] A. P. Sasmito, J. C. Kurnia, and A. S. Mujumdar, “Numerical Evaluation of Various Gas and Coolant Channel Designs for High Performance Liquid-Cooled Proton Exchange Membrane Fuel Cell Stacks,” Energy, vol.44, no.1, pp.278-291, 2012.
[18] M. Wang, H. Guo, and C. Ma, “Temperature Distribution on the MEA Surface of a PEMFC with Serpentine Channel Flow Bed,” Journal of Power Sources, vol.157, no.1, pp.181-187, 2006.
[19] Chin-Yung Wen, Yu-Sheng Lin, Chien-Heng Lu, and Tei-Wei Luo, “Thermal Management of a Proton Exchange Membrane Fuel Cell Stack with Pyrolytic Graphite Sheets and Fans Combined,” International Journal of Hydrogen Energy, vol.36, no.10, pp.6082-6089, 2010.
[20] A. P. Sasmito, E. Birgersson, K. W. Lum, and A. S. Mujumdar, “Fan Selection and Stack Design for Open-Cathode Polymer Electrolyte Fuel Cell Stacks,” Renewable Energy, vol.37, no.1, pp.325-332, 2012.
[21] 林貝蓉, “利用有限元素法分析質子交換膜燃料電池最佳溫度維持機制之研究,” 模具工程系碩士論文, 國立高雄應用科技大學, 高雄市, 2014.
[22] A. M. Lopez-Sabiron, Jorge Barroso, Vicente Roda, José Barranco, Antonio Lozano, and Félix Barreras, “Design and Development of the Cooling System of a 2 kW Nominal Power Open-Cathode Polymer Electrolyte Fuel Cell Stack,” International Journal of Hydrogen Energy. vol.37, no.8, pp.7289-7298, 2012.
[23] 朱星光,贾秋红,陈唐龙,韩明,邓斌, “質子交換膜燃料電池陰極風扇系統實驗研究,” 中國電機工程學報, no.11, 2013.
[24] Tao Zeng, Caizhi Zhang, Zhiyu Huang, Mengxiao Li, Siew Hwa Chan, Qian Li, and Xuesong Wu, “Experimental Investigation on the Mechanism of Variable Fan Speed Control in Open Cathode PEM Fuel Cell,” International Journal of Hydrogen Energy, vol.44, no.43, pp.24017-24027, 2019.
[25] Wei-Mon Yan, Xiao-Dong Wang, Sen-Sin Mei, Xiao-Feng Peng, Yi-Fan Guo, and Ay Su, “Effects of Operating Temperatures on Performance and Pressure Drops for a 256 cm2 Proton Exchange Membrane Fuel Cell: An Experimental Study,” Journal of Power Sources, vol.185, no.2, pp.1040-1048, 2008.
[26] M. Amirinejad, S. Rowshanzamir, and M. H. Eikani, “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, vol.161, no.2, pp.872-875, 2006.
[27] 陳冠宇, “呼吸式燃料電池控制系統最佳化之研究,” 航空太空工程學系碩士論文, 國立成功大學, 台南市, 2018.
[28] D. N. Ozen, B. Timurkutluk, and K. Altinisik, “Effects of Operation Temperature and Reactant Gas Humidity Levels on Performance of PEM Fuel Cells,” Renewable and Sustainable Energy Reviews, vol.59, pp.1298-1306, 2016.
[29] Y. Devrim, H. Devrim, and I. Eroglu, “Development of 500 W PEM Fuel Cell Stack for Portable Power Generators,” International Journal of Hydrogen Energy, vol.40, no.24, pp.7707-7719, 2015.
[30] M. Matian, A. J. Marquis, and N. P. Brandon, “Application of Thermal Imaging to Validate a Heat Transfer Model for Polymer Electrolyte Fuel Cells,” International Journal of Hydrogen Energy, vol.35, no.22, pp.12308-12316, 2010.
[31] M. Akbari, A. Tamayol, and M. Bahrami, “Thermal Assessment of Convective Heat Transfer in Air-Cooled PEMFC Stacks: An Experimental Study,” WHEC 2012 Conference Proceedings - 19th World Hydrogen Energy Conference. pp.1-11, 2012.
[32] 黃鎮江, 燃料電池, 第四版, 新北市: 全華圖書, 2017.
[33] 陳震宇, “溫度與溼度對PBI/H3PO4燃料電池特性影響之研究,” 航空太空工程學系博士論文, 國立成功大學, 台南市, 2010.
[34] A. De las Heras, F. J. Vivas, F. Segura, M. J. Redondo, and J. M.Andújar, “Air-Cooled Fuel Cells: Keys to Design and Build the Oxidant/Cooling System,” Renewable Energy, vol.125, pp.1-20, 2018.
[35] 黃耿彬, “陽極氣體條件對kW級氣冷式燃料電池堆特性影響之研究,” 航空太空工程學系碩士論文, 國立成功大學, 台南市, 2012.
[36] https://zh.wikipedia.org/wiki/%E5%8F%98%E5%BC%82%E7%B3%BB%E6%95%B0.
[37] Chen-Yu Chen, Keng-Pin Huang, Wei-Mon Yan, Ming-Ping Lai, and Chen-Cheng Yang, “Development and Performance Diagnosis of a High Power Air-Cooled PEMFC Stack,” International Journal of Hydrogen Energy, vol.41, no.27, pp.11784-11793, 2016.
[38] S. Shimpalee, M. Ohashi, J. W. Van Zee, C. Ziegler, C. Stoeckmann, C. Sadeler, and C. Hebling, “Experimental and Numerical Studies of Portable PEMFC Stack,” Electrochimica Acta, vol.54, no.10, pp.2899-2911, 2009.