| 研究生: |
洪佳琪 Hung, Chia-Chi |
|---|---|
| 論文名稱: |
具有交錯存取架構的超低能耗靜態隨機存取記憶體 Ultra-Low Energy Consumption SRAM with Wordline Interleaving Control |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 低能耗 、低電壓 、低功耗 、靜態隨機存取記憶體 、交錯控制字組線 |
| 外文關鍵詞: | Low Energy, Low Voltage, Low Power, SRAM, Wordline Interleaving |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著各式可攜式產品的不同功能需求增加,更多的功能被整合在一個面積受限的系統單晶片中,新一代的可攜式產品所消耗的能耗大幅增加且不容忽視,並導致供電電池的使用時間提前縮短,其中靜態隨機存取記憶體在系統晶片中佔據了極高的功耗比例,因此若是能儘量降低靜態隨機存取記憶體的能耗,渴望能使整體系統晶片受惠。
本篇論文提出一個採用字組線交錯控制機制、分割位元線和區域感測放大器等技術的改良架構,可降低存取功耗以及加速存取時間,進而達到較低能耗的目標,且僅使用單一電源以顧慮應用於可攜式產品時的系統層級成本考量。
上述所提出的設計以台積電九十奈米互補式金氧半導體製程技術,實現一個四千字元大小的近臨界電壓靜態隨機存取記憶體,從模擬結果顯示,這個具有改良架構的靜態隨機存取記憶體,可正確的操作在供應電壓為三百毫伏,能耗僅零點一三二微微焦耳,相較於傳統靜態隨機存取記憶體平均可節省55%的能耗及提升約1.91倍的操作速度。
With the increasing demands for versatile portable products, more and more functions are integrated into an area-constrained system. The energy consumed by the new-generation portable product increases dramatically and leads to short battery lifetime. Since the energy consumption of Static Random Access Memory (SRAM) occupies higher ratio than other components in systemona-chip(SoC), the overall system energy consumption can be lowered by reducing the energy consumption of SRAM.We propose a modified SRAM architecture that adopts wordline interleaving controller, hierarchical bit-lines and local sense amplifier methods to save energy consumption and to reduce access time. Besides, this work also maintains only one supply voltage as a power source to the SRAM for keeping the cost of portable products down under system level consideration. A 4Kb near-threshold SRAM macro with proposed techniques was implemented by using TSMC 90nm CMOS technology. According to the simulation results, the proposed SRAM can correctly operate at 0.3V supply voltage and only consume around 0.1323pJ. Compared to the traditional 6T SRAM, our proposed SRAM has an average 55% energy saving and around 1.91 times access speed improvement.
[1] M. Rouvala, "Nanotechnologies in portable device energy and power,"in Proc. Int. Vacuum Electron Sources Conference and Nanocarbon, Oct. 2010, pp. 88-88.
[2] S. Sudevalayam and P. Kulkarni, "Energy Harvesting Sensor Nodes: Survey and Implications," Communications Surveys & Tutorials, IEEE, vol. 13, no. 3, pp. 443-461, 2011.
[3] N. Verma, "Analysis Towards Minimization of Total SRAM Energy Over Active and Idle Operating Modes," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 19, no. 9, pp. 1695-1703, Sept. 2011.
[4] J. Kwong, Y. K. Ramadass, N. Verma, et al., "A 65 nm Sub-Vt Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Converter," IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 115-126, Jan. 2009.
[5] Z. Bo, S. Pant, L. Nazhandali, et al., "Energy-Efficient Subthreshold Processor Design," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 8, pp. 1127-1137, Aug. 2009.
[6] R. G. Dreslinski, M. Wieckowski, D. Blaauw, et al., "Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits," Proc. IEEE, vol. 98, no. 2, pp. 253-266, Feb. 2010.
[7] A. T. Do, J. Y. S. Low, J. Y. L. Low, et al., "An 8T Differential SRAM With Improved Noise Margin for Bit-Interleaving in 65 nm CMOS," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 58, no. 6, pp. 1252-1263, Jun. 2011.
[8] M. Khellah, Kim. Nam Sung, Ye. Yibin, et al., "Process, Temperature, and Supply-Noise Tolerant 45nm Dense Cache Arrays With Diffusion-Notch-Free (DNF) 6T SRAM Cells and Dynamic Multi-Vcc Circuits," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1199-1208, Apr. 2009.
[9] Y. H. Chen, G. Chan, S. Y. Chou, et al., "A 0.6 V Dual-Rail Compiler SRAM Design on 45 nm CMOS Technology With Adaptive SRAM Power for Lower VDD_min VLSIs," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1209-1215, Apr. 2009.
[10] A. Bansal, A. Mukhopadhyay, and K. Roy, "Device-Optimization Technique for Robust and Low-Power FinFET SRAM Design in NanoScale Era," IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1409-1419, Jun. 2007.
[11] S. Komatsu, M. Yamaoka, M. Morimoto, et al., "A 40-nm low-power SRAM with multi-stage replica-bitline technique for reducing timing variation,"in Proc. IEEE Custom Integrated Circuits Conference(CICC), Sept. 2009, pp. 701-704.
[12] S. Cosemans, W. Dehaene, and F. Catthoor, "A Low-Power Embedded SRAM for Wireless Applications," IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1607-1617, Jul. 2007.
[13] T. H. Kim, J. Liu, J. Keane, et al., "A 0.2 V, 480 kb Subthreshold SRAM With 1 k Cells Per Bitline for Ultra-Low-Voltage Computing," IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 518-529, Feb. 2008.
[14] T.-H. Kim, J. Liu, J. Keane, et al., "A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme," in IEEE Int. Solid-State Circuits Conference(ISSCC) Dig. Tech. Papers, 2007, pp. 330-606.
[15] N. Verma and A. P. Chandrakasan, "A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 141-149, Jan. 2008.
[16] B. H. Calhoun and A. Chandrakasan, "A 256kb Sub-threshold SRAM in 65nm CMOS," in IEEE Int. Solid-State Circuits Conference(ISSCC) Dig. Tech. Papers, 2006, pp. 2592-2601.
[17] I. J. Chang, J. J. Kim, S. P. Park, et al., "A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS," IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 650-658, Feb. 2009.
[18] S. Okumura, Y. Iguchi, S. Yoshimoto, et al., "A 0.56-V 128kb 10T SRAM using column line assist (CLA) scheme,"in Proc. Int. Symp. Quality Electronic Design(ISQED), May 2009, pp. 659-663.
[19] T. Suzuki, S. Moriwaki, A. Kawasumi, et al., "0.5-V, 150-MHz, bulk-CMOS SRAM with suspended bit-line read scheme,"in Proc. European Solid-State Circuits Conference(ESSCIRC), 2010, pp. 354-357.
[20] K. Takeda, Y. Hagihara, Y. Aimoto, et al., "A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications," IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 113-121, Jan. 2006.
[21] M. F. Chang, Y. C. Chen, and C. F. Chen, "A 0.45-V 300-MHz 10T Flowthrough SRAM With Expanded write/ read Stability and Speed-Area-Wise Array for Sub-0.5-V Chips," IEEE Trans. Circuits and Systems II: Express Briefs, vol. 57, no. 12, pp. 980-985, Dec. 2010.
[22] M. Yamaoka, K. Osada, and K. Ishibashi, "0.4-V logic library friendly SRAM array using rectangular-diffusion cell and delta-boosted-array-voltage scheme," Proceedings of the IEEE, vol. no. pp. 170-173cc2002.
[23] J. Davis, D. Plass, P. Bunce, et al., "A 5.6GHz 64kB Dual-Read Data Cache for the POWER6TM Processor," in IEEE Int. Solid-State Circuits Conference(ISSCC) Dig. Tech. Papers, 2006, pp. 2564-2571.
[24] Z. Kevin, U. Bhattacharya, C. Zhanping, et al., "A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply," IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 146-151, Jan. 2006.
[25] Y. H. Chen, W. M. Chan, S. Y. Chou, et al., "A 0.6V 45nm adaptive dual-rail SRAM compiler circuit design for lower VDD_min VLSIs,"in Proc. Symp. VLSI Circuits, Jun. 2008, pp. 210-211.
[26] K. Kim, C.-T. Chuang, J. B. Kuang, et al., "Low-Power High-Performance Asymmetrical Double-Gate Circuits Using Back-Gate-Controlled Wide-Tunable-Range Diode Voltage," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2263-2268, Sept. 2007.
[27] M. H. Tu, J. Y. Lin, M. C. Tsai, et al., "Single-Ended Subthreshold SRAM With Asymmetrical Write/Read-Assist," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010.
[28] Y. W. Chiu, J. Y. Lin, M. H. Tu, et al., "8T Single-ended sub-threshold SRAM with cross-point data-aware write operation,"in Proc. Int. Symp. Low Power Electronics and Design, Aug. 2011, pp. 169-174.
[29] B. D. Yang and L. S. Kim, "A low-power SRAM using hierarchical bit line and local sense amplifiers," IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1366-1376, Jun. 2005.
[30] S. Cosemans, W. Dehaene, and F. Catthoor, "A 3.6 pJ/Access 480 MHz, 128 kb On-Chip SRAM With 850 MHz Boost Mode in 90 nm CMOS With Tunable Sense Amplifiers," IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2065-2077, Jul. 2009.
[31] K. Takeda, T. Saito, S. Asayama, et al., "Multi-Step Word-Line Control Technology in Hierarchical Cell Architecture for Scaled-Down High-Density SRAMs," IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 806-814, Apr. 2011.
[32] S. Yoshimoto, M. Terada, S. Okumura, et al., "A 40-nm 0.5-V 20.1-uw/MHz 8T SRAM with low-energy disturb mitigation scheme,"in Proc. Symp. VLSI Circuits, Jun. 2011, pp. 72-73.
[33] V. Sharma, S. Cosemans, M. Ashouei, et al., "A 4.4 pJ/Access 80 MHz, 128 kbit Variability Resilient SRAM With Multi-Sized Sense Amplifier Redundancy," IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2416-2430, Oct. 2011.
[34] S. Ishikura, M. Kurumada, T. Terano, et al., "A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues," IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 938-945, Apr. 2008.
[35] M. Yoshimoto, K. Anami, H. Shinohara, et al., "A divided word-line structure in the static RAM and its application to a 64K full CMOS RAM," IEEE J. Solid-State Circuits, vol. 18, no. 5, pp. 479-485, Oct. 1983.
[36] T. Hirose, H. Kuriyama, S. Murakami, et al., "A 20-ns 4-Mb CMOS SRAM with hierarchical word decoding architecture," IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1068-1074, Oct. 1990.
[37] S. K. Lu and C. H. Hsu, "Fault tolerance techniques for high capacity RAM," IEEE Trans. Reliability, vol. 55, no. 2, pp. 293-306, Jun. 2006.
[38] C. Wu, L. J. Zhang, Y. Wang, et al., "SRAM power optimization with a novel circuit and architectural level technique,"in Proc. Int. Conf. Solid-State and Integrated Circuit Technology (ICSICT), Nov. 2010, pp. 687-689.
[39] B. Rooseleer, S. Cosemans, and W. Dehaene, "A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, Ultra Low Leakage Power Memory Using Dynamic Cell Stability and a Dual Swing Data Link," IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1-13, Jul. 2012.
[40] J. S. Wang, P. Y. Chang, T. S. Tang, et al., "Design of Subthreshold SRAMs for Energy-Efficient Quality-Scalable Video Applications," IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 183-192, Jun. 2011.
[41] T. D. Burd, T. A. Pering, A. J. Stratakos, et al., "A dynamic voltage scaled microprocessor system," IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571-1580, Nov. 2000.
[42] A. J. Van De Goor, "Using march tests to test SRAMs," IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, 1993.
[43] A. J. Van de Goor and B. Smit, "Automating the verification of memory tests,"in Proc. IEEE VLSI Test Symp., Apr. 1994, pp. 312-318.
[44] Z. Bo, S. Hanson, D. Blaauw, et al., "A Variation-Tolerant Sub-200 mV 6-T Subthreshold SRAM," IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2338-2348, Oct. 2008.