簡易檢索 / 詳目顯示

研究生: 陳琨明
Chen, Kun-Ming
論文名稱: 粉末冶金法製備之濺鍍靶材與其薄膜特性之研究
Investigation of the Sputtering Target Manufactured by Powder Metallurgy Method and its Thin Film Properties
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 147
中文關鍵詞: 濺鍍靶材粉末冶金法薄膜特性垂直記錄媒體硬質鍍層擴散阻障層
外文關鍵詞: sputtering target, powder metallurgy, film properties, perpendicular magnetic recording, hard coating, diffusion barrier
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 除了濺鍍參數之外,近年來越來越多研究指出靶材的特性會影響到濺鍍過程與薄膜性質,然而這三者之間的關聯性卻尚未被完整建立。因此本論文主要目的為研究靶材的微結構、成分與含氧量等性質對於濺鍍行為與薄膜特性的影響。本研究選擇四種不同靶材材料與其薄膜應用分別做探討,Part-1為熱壓法製備之Cr-Ti-Cu靶材微結構與其薄膜特性之研究(垂直記錄媒體-附著層);Part-2 為W與Cu的添加對於Ni-W-Cu合金靶材與薄膜特性之影響(垂直記錄媒體-種子層);Part-3 為不同粉末冶金法製備之Al-Cr靶材與其濺鍍行為之研究(車削刀具-硬質鍍層);Part-4 為電漿火花燒結搭配熱均壓製備之Ta靶材與其薄膜特性之研究(半導體-擴散阻障層)。上述四個不同應用主題反應出相同的結果,指出靶材性質不佳包含密度過低、含氧量過高,強度過差與脆性介金屬化合物過多等,均會導致濺鍍過程中不穩定電弧(Arcing)與粒子(Particle)的產生,進而影響到薄膜的均勻性。此外,靶材品質提升後,薄膜表現上也會同步獲得改善,包含電阻率、本質應力、表面粗糙度、晶粒尺寸與成份變異性等薄膜特性。綜合上述結果可得知,除了昔知的機台設備與鍍膜參數等因子外,靶材的優劣亦會強烈影響到濺鍍過程的穩定性與薄膜品質。

    The properties of sputtering targets have recently been found to affect the performances of sputtered films and the sputtering process. However, the correlations between them have not been well established. The purpose of this study is to investigate the influences of microstructure, composition and oxygen content of the targets on sputtering behavior and film properties. The experiments would be divided into four parts for detail discussion. The 1st part is the microstructures of hot-pressed Cr-Ti-Cu targets and their film properties for perpendicular magnetic recording application; the 2nd part is the effects of W and Cu on the microstructure of Ni-W-Cu seed layer in perpendicular magnetic recording; the 3rd part is the investigation of Al-Cr alloy targets sintered by various powder metallurgy methods and their particle generation behaviors in sputtering process; the 4th part is the investigation of Ta targets sintered by spark plasma sintering combined with hot isostatic pressing and their sputtering performance. All the topics showed the same tendency, the relationship between the target properties and the film performances indicated that the arcing behavior, particle generation and film uniformity were obviously correlated with inferior sputtering targets, which had low density, micro cracks from brittle IMCs. In addition, the films deposited from improved targets also showed the advantages on resistivity, intrinsic stress and surface roughness, grain size, composition deviation, etc. The overall results strongly reveal that target quality has significant effects on sputtering performance.

    中文摘要 ................I 英文延伸閱讀................II 誌謝..................IX 目錄...................X 表目錄.................XV 圖目錄..................XVI 第一章 緒論.................1 1.1前言..................1 1.2 研究目的................3 第二章 理論基礎................5 2.1. 濺鍍靶材與其製備方式.............5 2.1.1粉末冶金法-真空熱壓燒結 ............6 2.1.2. 粉末冶金法-熱均壓燒結............7 2.1.3 粉末冶金法-電漿火花燒結............8 2.2. 靶材品質與濺鍍薄膜之關連性..........10 2.3. 磁控濺鍍...............12 2.3.1 電漿的產生..............13 2.3.2 鍍層的成核..............14 2.3.4 薄膜形成機制..............16 2.3.5 薄膜生長的晶帶模型............19 2.4 薄膜應用-垂直記錄媒體膜層............20 2.4.1附著層(Adhesion layer)...........23 2.4.2軟磁層(Soft under layer, SUL)........24 2.4.3. 種子層(Seed layer)...........25 2.4.4. 中介層(Interlayer)...........29 2.4.5. 記錄層(Recording layer)..........30 2.5 薄膜應用-超硬耐磨耗鍍層...........31 2.5.1. Al-Cr-N薄膜特性............32 2.5.2. 氮化鋁鉻薄膜組成............32 2.6 薄膜應用-積體電路擴散阻障層..........34 第三章 實驗方法與步驟.............37 3.1 實驗流程圖................37 3.2. 濺鍍靶材製備..............40 3.2.1 垂直記錄媒體(附著層): Cr-Ti-Cu合金靶材......40 3.2.2垂直記錄媒體(種子層): Ni-W-Cu 合金靶材.......42 3.2.3超硬耐磨耗鍍層:Al-Cr合金靶材.........44 3.2.4積體電路擴散阻障層:Ta靶材..........48 3.3. 濺鍍測試與薄膜製備.............50 3.2.1 垂直記錄媒體(附著層):Cr-Ti-Cu薄膜........50 3.2.2垂直記錄媒體(種子層):Ni-W-Cu 薄膜.......50 3.2.3超硬耐磨耗鍍層:Al-Cr-N薄膜..........51 3.2.4積體電路擴散阻障層:Ta薄膜..........52 3.4. 材料分析...............52 3.4.1 X光繞射儀...............52 3.4.2 氧氣分析儀..............53 3.4.3 維式硬度量測儀.............53 3.4.4 萬能試驗機..............55 3.4.5 Arcing監測記錄儀............56 3.4.6 掃瞄式電子顯微鏡.............56 3.4.7 原子力顯微鏡..............57 3.4.8 穿透式電子顯微鏡.............58 3.4.9 薄膜應力量測儀.............58 3.4.10 附著力測試...............60 3.4.11 抗腐蝕測試...............61 3.4.12 四點探針電性量測............61 3.4.13 奈米壓痕硬度量測儀.............62 第四章 結果與討論..............63 4.1垂直記錄媒體(附著層):Cr-Ti-Cu靶材與其鍍膜之研究.....63 4.1.1 靶材微結構與相組成.............63 4.1.2 靶材抗折強度..............64 4.1.3 靶材氧含量..............65 4.1.4 濺鍍過程中的不穩定電弧數量與薄膜平整度之關聯性.....66 4.1.5 薄膜非晶化預估與GIXRD結構量測..........67 4.1.6 薄膜電阻率..............70 4.1.7 薄膜本質應力 ..............70 4.1.8 薄膜抗腐蝕性...............71 4.1.9 薄膜熱穩定性...............72 4.1.10 薄膜附著性...............72 4.2垂直記錄媒體(種子層):Ni-W-Cu靶材與其鍍膜之研究....86 4.2.1 靶材微結構與相組成.............86 4.2.2靶材抗折強度...............87 4.2.3靶材氧含量...............87 4.2.4薄膜結構分析...............88 4.2.5薄膜TEM分析...............90 4.2.6薄膜附著性...............92 4.2.7 濺鍍過程中的不穩定電弧數量...........92 4.3超硬耐磨耗鍍層:Al-Cr合金靶材與其鍍膜之研究.......103 4.3.1 靶材密度分析..............103 4.3.2 靶材微結構與相組成.............103 4.3.3 靶材機械性質..............105 4.3.4 靶材氧含量...............106 4.3.5濺鍍穩定性測試.............107 4.3.7 薄膜成分與硬度均勻性............108 4.4積體電路擴散阻障層:Ta靶材與其鍍膜之研究........120 4.4.1 靶材密度分析..............120 4.4.2 靶材晶粒尺寸..............121 4.4.3 靶材織構分析..............122 4.4.4 靶材氧含量..............123 4.4.5 濺鍍後靶材外觀.............123 4.4.6. 膜厚暨電阻均勻性............124 第五章 結論.................132 5.1垂直記錄媒體(附著層):Cr-Ti-Cu靶材與其鍍膜之研究.....132 5.2垂直記錄媒體(種子層):Ni-W-Cu靶材與其鍍膜之研究....133 5.3超硬耐磨耗鍍層:Al-Cr合金靶材與其鍍膜之研究.......134 5.4積體電路擴散阻障層:Ta靶材與其鍍膜之研究........135 參考文獻.................136

    參考文獻
    [1] www.substech.com.
    [2] 林天財,熱均壓,金屬工業,第33卷第5期,(1999),pp.94-95。
    [3] T. Garvare, HIP: proceedings of the international conference on hot isostatic pressing, Lulea, (1988) 15-17 .
    [4] M. Koizumi, Hot isostatic pressing theory and applications: proceedings of the third international conference, Elsevier Applied Science, (1992) 10-14.
    [5] 梁誠、張世賢,熱均壓強化之完全緻密型粉末冶金零件,粉末冶金會刊,第27卷第4期,(2002),pp.261-270。
    [6] 李世欽、張世賢、何信弘,熱均壓技術之應用,鑄造科技,第177期,(2004),pp.3-9。
    [7] U. Mazur, A.C. Clearly, Infrared and tunneling spectroscopy study of AlN films prepared by ionbeam deposition, The Journal of Physical Chemistry, 94 (1990) 189-194.
    [8] B. Chapman, Low discharge process: sputtering and plasma etching, John Wiley and Sons, New York, (1980).
    [9] 莊達人,VLSI製造技術,高立圖書有限公司,(1995),pp.146-158。
    [10] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of the thick sputtered coating, Journal of Vacuum Science and Technology, 11 (1974) 666-670.
    [11] J. Zou, B. Lu, High coercivity CoCrPt films achieved by post-deposition rapid thermal annealing, Journal of Applied Physics, 87 (2000) 6869-6871.
    [12] H.J. Richter, R.Y. Ranjan, Relaxation effects in thin film media and their consequences, Journal of Magnetism and Magnetic Materials, 193 (1999) 213-219.
    [13] D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording, IEEE Transactions on Magnetics, 35 (1999) 4423-4439.
    [14] S. Khizroev, M.H. Kryder, Recording physics of perpendicular media: soft underlayers, Journal of Magnetism and Magnetic Materials, 232 (2001) 84-90.
    [15] D. Litvinov, M.H. Kryder, Recording physics of perpendicular media: hard layers, Journal of Magnetism and Magnetic Materials, 241 (2002) 453-456.
    [16] R. Wood, Y. Sonob, Z. Jin, B. Wilson, Perpendicular recording: the promise and the problems, Journal of Magnetism and Magnetic Materials, 235 (2001) 1-9.
    [17] D. Litvinov, M.H. Kryder, S. Khizroev, Recording physics of perpendicular media: soft underlayers, Journal of Magnetism and Magnetic Materials, 232 (2001) 84-90.
    [18] S.N. Piramanayagam, K. Srinivasan, Recording media research for future hard disk drives, Journal of Magnetism and Magnetic Materials, 321 (2009) 485-494.
    [19] J. Van Ek, A. Shukh, E. Murdock, G. Parker, S. Batra, Micromagnetic perpendicular recording model: soft magnetic underlayer and skew effect, Journal of Magnetism and Magnetic Materials, 235 (2001) 408-412.
    [20] T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Development of high-performance magnetic thin film for high-density magnetic recording, Electrochimica Acta, 50 (2005) 4576-4585.
    [21] A.K. Kulkarni, L.C. Chang, Electrical and structural characteristics of chromium thin films deposited on glass and alumina substrates, Thin Solid Films, 301 (1997) 17-22.
    [22] V. Guilbaud-Massereau, A. Celerier, J. Machet, Study and improvement of the adhesion of chromium thin films deposited by magnetron sputtering, Thin Solid Films, 258 (1995) 185-193.
    [23] J.H. Kim, E. Akiyama, H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami, The corrosion behavior of sputter-deposited amorphous titanium-chromium alloys in 1 M and 6 M HCl solutions, Corrosion Science, 34 (1993) 975-987.
    [24] R.W. Wood, J. Miles, T. Olson, Recording technologies for terabit per square inch systems, IEEE Transactions on Magnetics, 38 (2002) 1711-1718.
    [25] J. Schare, M.H. Kryder, Design consideration for spin-pole-type write heads, IEEE Transactions on Magnetics, 39 (2003) 1842-1845.
    [26] D. Litvinov, M.H. Kryder, Physics of perpendicular magnetic recording: Playback, Journal of applied physics, 93 (2003) 9155-9164.
    [27] S. Khizroev, R.W. Gustafson, M.H. Kryder, D. Litvinov, Multiple magnetic image reflection in perpendicular recording, IEEE Transactions on Magnetics, 93 (2002) 2066-2068.
    [28] W. Peng, O. Keitel, R.H. Victora, E. Koparal, J.H. Judy, Co/Pt superlattices with ultra-thin Ta seed layer on NiFe underlayer for double-layer perpendicular magnetic recording media, IEEE Transactions on Magnetics, 36 (2002) 2390-2392.
    [29] S.N. Piramanayagam, Perpendicular recording media for hard disk drives, Journal of Applied Physics, 102 (2007) 011301.
    [30] L. Lee, D.E. Laughlin, D.N. Lambeth, NiAl underlayers for CoCrTa magnetic thin films, IEEE Transactions on Magnetics, 30 (1994) 3951-3953.
    [31] L. Lee, D.E. Laughlin, L. Fang, D.N. Lambeth, Effects of Cr intermediate layers on CoCrPt thin film media on NiAl underlayers, IEEE Transactions on Magnetics, 31 (1995) 2728-2730.
    [32] J. Li, M. Mirzamaani, X. Bian, M. Doerner, S. Duan, K. Tang, 10 Gbit/in.2 longitudinal media on a glass substrate, Journal of Applied Physics, 85 (1999) 4286-4291.
    [33] C.A. Ross, T.P. Nolan, R. Ranjan, D. Lu, The role of NiAl underlayers in longitudinal thin-film recording media, Journal of Applied Physics, 81 (1997) 7441-7444.
    [34] A. Das, S.R. Kennedy, M.G. Racine, Ni-X, Ni-Y, and Ni-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording, (2008), US Patent 20080131735 A1.
    [35] H.S. Jung, D. Stafford, B.R. Acharya, S.S. Malhotra, G.A. Bertero, Perpendicular magnetic recording medium with grain isolation magnetic anistropy layer, (2013), US Patent 8488276.
    [36] N. Sulitanu, Structural origin of perpendicular magnetic anisotropy in Ni–W thin films, Journal of Magnetism and Magnetic Materials, 31 (2001) 85-93.
    [37] S.J. Kurz, C. Ensslen, U. Welzel, A. Leineweber, E.J. Mittemeijer, The thermal stability of Ni–Mo and Ni–W thin films: solute segregation and planar faults, Scripta Materialia, 69 (2013) 65-68.
    [38] L.N. Zhang, J.F. Hu, J.S. Chen, J. Ding, A study on magnetic properties and structure of SmCo5 thin films on Ni–W underlayers, Journal of Magnetism and Magnetic Materials, 322 (2010) 3737-3741.
    [39] B.S. Murty, J.W. Yeh, S. Ranganathan, High entropy alloy: solid solutions, Butterworth-Heinemann, 1st ed., Ch.6 (2014) 91-118.
    [40] S. Saito, F. Hoshi, M. Takahashi, Effects of very thin carbon seedlayer on formation of hcp phase for CoCrPtB/Co60Cr40 perpendicular magnetic recording media, IEEE Transactions on Magnetics, 38 (2002) 1985-1987.
    [41] C.L. Platt, J.K. Howard, Influence of stress on nucleation field of CoCrPt perpendicular media, Journal of Applied physics, 91 (2002) 772-774.
    [42] J.Z. Shi, S.N. Piramanayagam, C.S. Mah, H.B. Zhao, J.M. Zhao, Y.S. Kay, Influence of dual-Ru intermediate layers on magnetic properties and recording performance of CoCrPt–SiO2 perpendicular recording media, Applied Physics Letters, 87 (2005) 222503.
    [43] T. Hikosaka, Perpendicular magnetic recording medium and magnetic read/write apparatus, (2003), US Patent 6670056.
    [44] Y. Hirayama, A. Kikukawa, Low noise performance of CoCrPt single-layer perpendicular magnetic recording media, IEEE Transactions on Magnetics, 36 (2000) 2396-2398.
    [45] J.H. Judy, Advancements in PMR thin-film media, Journal of Magnetism and Magnetic Materials, 287 (2005) 16-26.
    [46] T. Klemmer, Y. Peng, X. Wu, G. Ju, Materials processing for high anisotropy L10 granular media, IEEE Transactions on Magnetics, 45 (2009) 845-849.
    [47] H. Uwazumi, T. Shimatsu, Y. Sakai, A. Otsuki, I. Watanabe, H. Muraoka, Y. Nakamura, Recording performance of CoCrPt-(Ta,B)/TiCr perpendicular recording media, IEEE Transactions on Magnetics, 37 (2001) 1595-1598.
    [48] T. Oikawa, M. Nakamura, Microstructure and magnetic properties of CoPtCr-SiO2 perpendicular recording media, IEEE Transactions on Magnetics, 38 (2002) 1976-1978.
    [49] E. Martinez, R. Sanjinés, A. Karimi, J. Esteve, F. Lévy, Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films, Surface and Coatings Technology, 180 (2004) 570-574.
    [50] C. Nouveau, M.A. Djouadi, O. Banakh, R. Sanjinés, F. Lévy, Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering, Thin Solid Films, 398 (2001) 490-495.
    [51] J. Vetter, R. Knaup, H. Dweletzki, E. Schneider, S. Vogler, Hard coatings for lubrication reduction in metal forming, Surface and Coatings Technology, 86 (1996) 739-747.
    [52] E.L. Bourhis, P. Goudeau, M.H. Staia, E. Carrasquero, E.S. Puchi-Cabrera, Mechanical properties of hard AlCrN-based coated substrates, Surface and Coatings Technology, 203 (2009) 2961-2968.
    [53] J. Lin, M. Pinkas, W.D. Sproul, J.J. Moore, The phase and microstructure of CrAlN films deposited by pulsed dc magnetron sputtering with synchronous and asynchronous bipolar pulses, Thin Solid Films, 520 (2011) 166-173.
    [54] M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method, Surface and Coatings Technology, 177 (2004) 627-630.
    [55] R. Sanjinés, O. Banakh, C. Rojas, P.E. Schmid, F. Lévy, Electronic properties of Cr1−xAlxN thin films deposited by reactive magnetron sputtering, Thin Solid Films, 420 (2002) 312-317.
    [56] J. Vetter, E. Lugscheider, S.S. Guerreiro, (Cr:Al)N coatings deposited by the cathodic vacuum arc evaporation, Surface and Coatings Technology, 98 (1998) 1233-1239.
    [57] A. Kimura, M. Kawate, H. Hasegawa, T. Suzuki, Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films, Surface and Coatings Technology, 169 (2003) 367-370.
    [58] M. Panjan, S. Šturm, P. Panjan, M. Čekada, TEM investigation of TiAlN/CrN multilayer coatings prepared by magnetron sputtering, Surface and Coatings Technology, 202 (2007) 815-819.
    [59] A. Sugishima, H. Kajioka, Y. Makino, Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method, Surface and Coatings Technology, 97 (1997) 590-594.
    [60] Y. Makino, Application of band parameters to materials design, ISIJ International, 38 (1998) 925-934.
    [61] H. Willmann, P.H. Mayrhofer, P.O. Å. Persson, A.E. Reiter, L. Hultman, C. Mitterer, Thermal stability of Al–Cr–N hard coatings, Scripta Materialia, 54 (2006) 1847-1851.
    [62] A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation, Surface and Coatings Technology, 200 (2005) 2114-2122.
    [63] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Microstructure, mechanical and tribological properties of Cr1−xAlxN films deposited by pulsed-closed field unbalanced magnetron sputtering, Surface and Coatings Technology, 201 (2006) 4329-4334.
    [64] E. Clementi, D.L. Raimondi, W.P. Reinhardt, Atomic screening constants from SCF functions, Journal of Chemical Physics, 47 (1967) 1300-1307.
    [65] T. Oku, E. Kawakami, M. Uekuo, K. Takahiro, S. Yamaguchi, M. Murakami, Diffusion barrier property of TaN between Si and Cu, Applied Surface Science, 99 (1996) 265-272.
    [66] S.C. Sun, M.H. Tsai, C.E. Tsai, H.T. Chiu, Performance of MOCVD tantalum nitride diffusion barrier for copper metallization, Symposium on VLSI technology: Digest of Technical Papers, (1995) 29-30.
    [67] K. Abe, Y. Harada, H. Onoda, Study of crystal orientation in Cu films on TiN layered structures, Journal of Vacuum Science and Technology, 17 (1999) 1464-1469.
    [68] K.H. Min, K.C. Chun, K.B. Kim, Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization, Journal of Vacuum Science and Technology B, 14 (1996) 3263-3269.
    [69] X. Sun, E. Kolawa, J.S. Chen, J.S. Reid, M.-A. Nicolet, Properties of reactively sputter-deposited TaN thin films, Thin Solid Film, 236 (1993) 347-351.
    [70] 林俊成,國立台灣科技大學化工所,RF 濺鍍成長TaNX 薄膜及其在積體電路之銅製程上的應用,(1999)。
    [71] W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583.
    [72] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Materials Science and Engineering: A, 253 (1998) 151-159.
    [73] G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, Journal of Materials Research, 7 (1992) 613-617.
    [74] R. Mostovoy, G.T. Mori, Preventing defect generation from targets through applying metal spray coatings on sidewalls, (2002), US Patent 6428663.
    [75] H. Fukuyo, Y. Shindo, H. Takahashi, Titanium target for sputtering, (2004), US Patent 6755948.
    [76] Y. Morishita, S. Ogino, Y. Nakamura, Co-Cr-Pt-B-based alloy sputtering target and method for producing same, (2013), US Patent 0341184-A1.
    [77] A.Y. Suh, A.A. Polycarpou, Digital filtering methodology used to reduce scale of measurement effects in roughness parameters for magnetic storage supersmooth hard disks, Wear, 260 (2006) 538-548.
    [78] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238.
    [79] A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions, 41 (2000) 1372-1378.
    [80] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions, 46 (2005) 2817-2829.
    [81] C. Kittel, Introduction to solid state physics, John Wiley and Sons, New York, 7th ed., Ch10 (1995) 235-236.
    [82] A.R. Miedema, P.F. de Chatel, F.R. de Boer, Cohesion in alloys-fundamentals of a semiempirical model, Physica B+C, 100 (1980) 1-28.
    [83] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London A, 82 (1909) 172-175.
    [84] J.H. Kim, H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The corrosion behavior of sputter-deposited amorphous copper-tantalum alloys in 12 M HCl. Corrosion Science, 33 (1992) 1507-1518.
    [85] S.L. Ou, P.C. Kuo, S.C. Chen, T.L. Tsai, C.Y. Yeh, H.F. Chang, Crystallization mechanisms and recording characteristics of Si/CuSi bilayer for write-once blu-ray disc, Applied Physics Letters. 99 (2011) 121908.
    [86] Y.C. Her, W.T. Tu, M.H. Tsai, Phase transformation and crystallization kinetics of a-Ge/Cu bilayer for blue-ray recording under thermal annealing and pulsed laser irradiation, Journal of Applied Physics, 111 (2012) 043503.
    [87] S. Oue, H. Nakano, S. Kobayashi, H. Fukushima, Structure and codeposition behavior of Ni–W alloys electrodeposited from ammoniacal citrate solutions, Journal of The Electrochemical Society. 156 (2009) 17-22.
    [88] B.D. Cullity, S.R. Stock, Elements of X-Ray diffraction, Prentice Hall, 3rd ed., Ch.10 ( 2001) 305-342.
    [89] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64.
    [90] D.E. Laughlin, Y.C. Feng, D.N. Lambeth, L.L. Lee, L. Tang, Design and crystallography of multilayered media, Journal of Magnetism and Magnetic Materials, 155 (1996) 146-150.
    [91] B.R. Acharya, A. Inomata, E.N. Abarra, A. Ajan, D. Hasegawa, I. Okamoto, Synthetic ferrimagnetic media for over 100 Gb/in2 longitudinal magnetic recording, Journal of Magnetism and Magnetic Materials, 260 (2003) 261-272.
    [92] T. Kanbe, Y. Yahisa, H. Suzuki, H. Kataoka, Y. Takahashi, Y. Hirayama, Low noise antiferromagnetically coupled media with CrTiB underlayer, Journal of Applied Physics, 91 (2002) 8611-8613.
    [93] A.J. Detor, C.A. Schuh, Tailoring and patterning the grain size of nanocrystalline alloys, Acta Materialia, 55 (2007) 371-379.
    [94] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions, 46 (2005) 2817-2829.
    [95] A. Kimura, T. Murakami, K. Yamada, T. Suzuki, Hot-pressed Ti-Al targets for synthesizing Ti1−xAlxN films by the arc ion plating method, Thin Solid Films, 382 (2001) 101-105.
    [96] H. Faraoun, H. Aourag, C. Esling, J.L. Seichepine, C. Coddet, Elastic properties of binary NiAl, NiCr and AlCr and ternary Ni2AlCr alloys from molecular dynamic and Abinitio simulation, Computation Materials Science, 33 (2005) 184-191.
    [97] K. Mahdouk, J.C. Gachon, Thermodynamic investigation of the aluminum-chromium system, Journal of Phase Equilibrium, 21 (2000) 157-166.
    [98] R. Mostovoy, G.T. Mori, Preventing defect generation from targets through applying metal spray coatings on sidewalls, (2002), US Patent 6428663.
    [99] H. Fukuyo, Y. Shindo, H. Takahashi, Titanium target for sputtering, (2004), US Patent 6755948.
    [100] Z. Zhang, L. Kho, C.E. Wickersham, Effect of grain orientation on tantalum magnetron sputtering yield, Journal of Vacuum Science and Technology A, 24 (2006) 1107-1109.
    [101] C.E. Wickersham, Z. Zhang, Measurement of angular emission trajectories for magnetron-sputtered tantalum, Journal of Electronic Materials, 34 (2005) 1474-1479.
    [102] V.I. Yushkov, V.V. Shimov, R.A. Adamesku, V.A. Zagrebin, Non-uniformity of texture of cold-rolled tantalumby, Tsvetnye Metally, 3 (1983) 83-85.
    [103] J.B. Clark, R.K. Garrett, T.L. Jungling, R.A. Vandermeer, Effect of processing variables on texture and texture gradients in tantalum, Metallurgical and Materials Transactions A, 22 (1991) 2039-2048.
    [104] H. Klein, C. Heubeck, H.J. Bunge, Inhomogeneous textures in tantalum sheets, Materials Science Forum, 157 (1994) 1423-1434.
    [105] D. Raabe, Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes, Materials Science and Engineering A, 197 (1995) 31-37.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE