| 研究生: |
潘晨安 Pan, Cheng-an |
|---|---|
| 論文名稱: |
可回應建築-以感知運算為基礎的動態建築設計 Exploring Sensing-based Kinetic Design for Responsive Architecture |
| 指導教授: |
鄭泰昇
Jeng, Tay-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 動態設計 、可回應建築 、智慧空間 |
| 外文關鍵詞: | Responsive Architecture, Kinetic Design, Smart Space |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前大部分建築物缺乏彈性變動能力,難以因應環境變化與使用者需求。為了創造符合人本需求的空間,同時兼顧永續發展的課題,必須採取多元性與適應性的設計策略。近年來遍佈運算、智慧空間與機器人產業的研究發展趨勢,為建築與機械的整合體系開啟了契機,本論文就可回應建築這個主題,探索以感知運算科技為基礎的動態建築設計。「可回應建築」是指:一個靈敏的可變動建築構造,能感知環境條件、生態涵構、使用者活動等變動因子,並調整自身形貌或物理性質。
.
本研究基於兩個基本觀點,巨觀的涵構觀點,認為建築形貌是依循所處的涵構情勢而存在;在微觀角度,受到生物學與機構學的啟發,影響了後續研究對於基本個體在構造上與行為上的看法。本論文的討論過程包含以下幾個部分:
相關文獻回顧:
回溯過去相關論述了解當代研究發展,並建立案例分析觀點;橫向涉獵本議題所牽涉的相關領域如生物學、機構學、資訊科學;分析相關案例並歸納設計手法。
概念架構建立:
提出可回應建築的概念架構並分節探討,分成幾個部分:
空間情境-著眼於真實涵構條件的變動特質,空間需求應該跳脫單一性的預設機能,而被視為成具有多元性的及時情境狀態。
可動實體-發展「可回應建築基元模組」與「基元組構方式」以利於動態設計方法的建立。
行為劇本-討論可動元件的運作控制,提出兼具思考推論與即時反應的「混合式控制架構」,各層次控制模式與人機介面的議題也在此被探討。
運動狀態-動態構造的的實際行為,需要一套運動學模型來表達重現。
原型系統演作:
藉由原型系統「MimosaSystem」,演作一整合性的設計流程。包含:設計草案、動態構件、控制程式、數位製造,原型的演作經驗促使研究知識的修正與擴增,以及更進一步的議題探討。
本文結論回顧本研究之任務工作,並討論相關研究議題,最後提出有必要被進階發展的後續研究方向。
Current architectural design is limited by the lack of flexibility, where spatial configuration is static and cannot satisfy the requirement of environmental change. To create such a space that can respond to changing needs, current approaches to architectural design must be expanded to support dynamics, flexibility, and adaptability of design.
.
Trends in ubiquitous computing are opening up new opportunities for developing a new vision of an interactive and responsive and machine-integrated architecture. The term “responsive architecture” is commonly defined as a dynamic shape-shifting building system that is susceptible to alter its shape and physical properties in response to environmental conditions, user activities, and social contexts.
.
This thesis is focused on the design of responsive architecture from two complementary perspectives. One perspective is the macro-view regarding architecture as an interaction interface of contextual situation. The micro-view, inspired by Biology and Mechanism, is the dynamic conformation and behavior revealed by the characteristic of the basic primitives.
.
This thesis is organized as follows:
.
1. Literature Review:
This thesis provides a literature review of the contemporary development of responsive architecture. Analysis of design concepts, practice, and techniques are presented.
.
2. Conceptual framework :
This thesis provides a conceptual framework of responsive architecture, which is comprised of four parts:
Situation - responsive architecture is driven by situations where context is sensitive with respect to user and environmental conditions
Embodiment -Responsive primitive modules are developed to construct a dynamic responsive architecture.
Scenario -The behavior of kinetic components is controlled by scenario-based hybrid control systems.
Kinetics -To representation the actual performance derived from the motive population, a kinetic design model is required.
.
3. Prototyping:
A design prototype called “Mimosa” has been implemented. The design process ranging from sketching, kinetic modeling, physical design, control mechanisms, and digital fabrication is demonstrated.
.
4. Conclusion and future work:
A Review the research works of responsive is presented. The potential, derivational issues, and further research directions in responsive architecture are discussed.
.
。Abowd, G., Bobick, A., Essa, I., Mynatt, E., W. Rogers. (2002). The Aware Home: Developing Technologies for Successful Aging. Workshop in conjunction with American Association of Artificial Intelligence (AAAI) Conference. July Alberta, Canada
。Addington, M., Schodek, D. L. (2004). Smart Materials and Technologies in Architecture: Architectural Press.
。Beesley, P., S. Hirosue, J. Ruxton, M. Trankle, Turner, C. (2006). Responsive Architectures: Subtle Technologies: Riverside Architectural Press.
。Brodey, W. M., Lindgren, N. (1967). Soft Architecture-The Design of Intelligent Environment. Landscape, 17(1), 8-12.
。Brooks, R. (1986). A Robust Layered Control System For Mobile Robots. IEEE Journal of Robotics and Automation, 2(1), 14-23.
。Brooks, R. (1997). The Intelligent Room Project. Aizu, Japan
。Chiu, M. (Ed.). (2005). CAAD TALKS 5- Insights of Smart Environments. Taipei, Taiwan: Archidata Co., Ltd.
。Chomsky, N. (1989).句法結構 (謝石、結構群, Trans.). 臺北市:結構群發行.
。Cobb, R. G., Sullivan, J., Das, A., Davis, L. P., Hyde, T. T., Davis, T., et al. (1999). Vibration isolation and suppression system for precision payloads in space. Smart Mater. Struct., 8, 798-812.
。Coste-Mani, E., Simmons. (2000). Architecture, The Backbone Of Robotic Systems. Proceedings of the 2000 IEEE International Conference on Robotics & Automation. Francisco, California
。Eastman, C. (1971). Adaptive-Conditional Architectur. Design Participation, Proceedings of the Design Research Society's Conference Manchester. September Academy Editions, London
。Fox, M. A. (2001). Beyond Kinetic. Conference Proceedings of Transportable Environments. Book Info TBA
。Fox, M. A. (2001). Ephemeralization. OZ, Journal of Architecture.
。Fox, M. A., Yeh, B. P. (1999). Intelligent Kinetic Systems Managing Interactions in Smart Environments Springer-Verlag
。Gates, B. (2007, January). A Robot in Every Home. Scientific American Magazine.
。Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI Magazine 11(4), 26~36.
。Gero, J. S., Fujii, H. (2000). Computational framework for concept formation for a situated design agent. Knowledge-Based Systems 13(6), 361~368
。Greene, J. (1974). Psycholinguistics: Chomsky and psychology Harmonsworth, Middlesex: Penguin books.
。Greenfield, A. (2006). Everyware: The Dawning Age of Ubiquitous Computing: Peachpit Press.
。Guerra-Filho, G., Aloimonos, Y. (2007). A Language for Human Action. IEEE Computer Magazine, 40(5), 60-69.
。Helal, S. e. a. (2005). The Gator Tech Smart House: A Programmable Pervasive Space. IEEE Computer,, 38(3), 64-73.
。Hight, C., Perry, C. (2006). Collective Intelligence in Design: Academy Press.
。Hoagland, M., Dodson, B., Hauck, J. (2001). Exploring the Way Life Works: The science of Biology: Jones and Bartlett.
。House_n. (2006). The House of the Future: Building Blocks: Popular Science.
。Intille, S. S. (2002). Designing a home of the future. IEEE Pervasive Computing, April-June, 80-86.
。Jeng, T. (2005). Advanced Ubiquitous Media for Interactive Space: A Framework. Proceedings of CAADFutures. July 19-21 Vienna, Austria.
。Jeng, T., Lin, H.-C., Shen, Y.-T., Pan, C.-A., Chen, C.-I. (2007). Physical Prototyping of Interactive Space. Proceedings of CAADRIA2007. April Nanjing, China
。Jeng, T., Pan, C.-A., Chen, C.-I. (2008). The Interactive Architecture Design Studio. Proceedings of Design Computing and Cognition (DCC). June 23-25 Georgia Institute of Technology, Atlanta, USA
。Kronenburg, R. (2007). Flexible: Architecture that Responds to Change: Laurence King.
。Kronenburg, R. (2007). Transportable Environments 3: Taylor & Francis.
。Kroner, W. M. (1997). An intelligent and responsive architecture. Automation in Construction, 6(5), 381-393.
。Leatherbarrow, D., Mostafavi, M. (2005). Surface Architecture: The MIT Press.
。Lee, C., Jeng, T. (2003). A Context Manager for Tangible Media Design Presentation: A Human-Centric Interaction Approach. International Journal of Automation in Construction, 12, 487-493.
。Lee, C. H., Wetzel, J., Selker, T. (2006). Enhancing Interface Design Using Attentive Interaction Design Toolkit. Educators program in SIGGRAPH. SIGGRAPH
。Lee, J. C.-H. Spatial User Interfaces: Augmenting Human Sensibilities in a Domestic Kitchen. Massachusetts Institute of Technology.
lgoe, T., O'Sullivan, D. (2004). Physical Computing: Sensing and Controlling the Physical World with Computers: Course Technology Ptr.
。Lupton, E. (2002). Skin: Surface, Substance, and Design. Princeton Architectural Press.
。Magnoli, G. C., Bonanni, L. A., Khalaf, R., Fox, M. (2001). Designing a DNA for responsive architecture: a new built environment for social sustainability. Design Workshop, MIT Media Lab
。Mahalingam, G. (2006). Modeling Behaviour. Intelligent Building and Design Innovations, issue 6.
。Mitchell, W. J. (1990). The logic of architecture :design, computation, and cognition Cambridge, Mass: MIT Press.
。Mitchell, W. J. (1995). City of bits: space, place, and the infobahn Cambridge, Mass.: MIT Press.
。Mitchell, W. J. (2003). Me++: The Cyborg Self and The Networked City. Cambridge, Mass.: The MIT Press.
。Mostaedi, A., George, W. (2006). Great spaces :flexible homes Barcelona, Spain LINKS.
。Negroponte, N. (1970). The Semantics Of Architecture Machines. Architectural Design.
。Negroponte, N. (1975). Soft Architecture Machines. Cambridge Massachusetts: MIT Press.
。Nevill-Manning, C. G., IHW, I. H. W. (1997). Identifying Hierarchical Structure in Sequences: A linear-time algorithm. Journal of Artificial Intelligence Research, 7, 67-82.
。Norman, D. A. (1998). The design of everyday things London: MIT Press.
。Norman, D. A. (2005). Robots in the Home: What Might They Be? Interactions, 12(2).
。Norman, D. A. (2007). The Design of Future Things: Perseus Books Group
。Pan, C.-A., Jeng, T. (2008). Exploring Sensing-Based Kinetic Design for Responsive Architecture. April 9-12 Chiang Mai, Thailand
。Pask, G. (1969). Architectural Relevance of Cybernetics. Architectural Design, September, 494-496.
。Rabeneck, A. (1969). Cybermation: A Useful Dream. Architectural Design, September, 497-500.
。Raz, D., al., e. (2006). Fast and efficient context-aware services. Hoboken, NJ: Wiley.
。Russell, D. M., Streitz, N. A., Winograd, T. (2005). Building Disappearing Computers. Communications of the ACM, 48(3).
。Russell, S., Norvig, P. (2006). 人工智慧 :現代方法 (高超群, Trans.). 臺北市: 臺灣培生教育.
。Schaal, S., Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15, 675-682.
。Shen, B. H., Tsai, M. C. (2006). Robust Dynamic Stiffness Design of Linear Servomotor Drives. IFAC Journal of Control Engineering Practice, 14(11), 1325-1336.
。Siegal, J. (2002). Mobile: The Art of Portable Architecture: Princeton Architectural Press.
。Simon, H. A. (1992). The Sciences of The Artificial (Seventh ed.). Cambridge, Mass.: MIT Press.
。Sterk, T. (2003). Building Upon Negroponte: A Hybridized Model of Control Suitable for Responsive Architecture 21th eCAADe Conference Proceedings 17-20 September Graz, Austria
。Sterk, T. (2003). Using Actuated Tensegrity Structures to Produce a Responsive Architecture. Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture 24-27 October Indianapolis,Indiana
。Sterk, T. (2006, April ). CAAD For Responsive Architecture. Joint Study Report 2005-2006 Auto-des-Sys, 66-70
。Wang, M.-H. (1991). What do Architectural Linguists Say? Journal of Architecture, 2, 143-153.
。Wang, U., Lyons, C., Thayer, S. (2005). An Analysis of the Human Odometer. Robotic Institute Technical Report, Carnegie Mellon University.
。Weiser, M. (1991). Computer of the 21st Century. Scientific American, 265(3), 94-104.
。Wigginton, M., Harris, J. (2002). Intelligent Skins: Architectural Press.
。Yan, H. S. (1992). A Methodology for Creative Mechanism Design. Mechanism and Machine Theory, 27(3), 235-242.
。Yan, W., Kalay, Y. E. (2004). Simulating the behavior of users in built environments. Journal of Architectural and Planning Research, 21(4), 371~384.
。Yeang, K. (2004). 摩天大樓生物氣候入門 (施植明, Trans.). 台北: 木馬文化.
。王明蘅. (2000). 新世紀之挑戰:邁向巧慧的物質體系. 中華民國室內設計學術研討會論文集. 高雄
。何炯德. (2007). 活潑建築 (Vol. 東海建築叢書). 臺中市: 東海大學創藝院建築研究中心.
。呂政道. (2000). 部分即整體-關於複合形式的設計理論與方法 國立成功大學建築研究所碩士論文.
。初家怡. (2001). 構法-一個語言觀點的實體構造設計理論 國立成功大學建築研究所碩士論文.
。陳上元. (2006). 智慧代理者理論應用在可調適性建築環境的研究-以智慧皮層為例. 國立成功大學建築研究所碩士論文.
。黃種祥. (2005). 智慧住宅設計-生活劇本下的空間情境探討. 國立成功大學建築研究所碩士論文.
。楊大智、游正峰編. (2001). 智能材料與智能系統. 台北:21世紀新材料叢書.
。鄭昭明. (2006). 認知心理學 :理論與實踐 = Cognitive psychology (增訂三版 ed.). 臺北市: 桂冠出版.
。鄭泰昇. (2003). 媒體、互動與智慧型空間-從「數位媒體與建築」展覽談起. 建築師雜誌, 10月號,第346期.
。顏鴻森, 吳隆庸. (2006). 機構學 =Mechanisms 臺北市: 臺灣東華.
。鐘佳君. (2008). 生活日誌—智慧生活空間之活動關係探討與法則. 國立成功大學建築研究所碩士論文.