簡易檢索 / 詳目顯示

研究生: 黃和雅
Huang, Ho-Ya
論文名稱: 掃描探針場致氧化下矽鍺奈米氧化物之電性量測研究
Electron transport in SiGe Nano-oxides Fabricated by Scanning Probe Anodic Oxidation
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 場致氧化矽鍺合金蕭特基能障
外文關鍵詞: Anodic Oxidation, SiGe, Schottky barrier
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於矽鍺合金與作為閘極材料的二氧化矽在半導體產業的大量應用,本論文旨在以電性量測的方式,探討矽鍺薄膜以及其氧化物之界面特性。
    本實驗所使用的樣品為矽鍺合金基板,使用原子力顯微鏡以局部場致氧化的方式在矽鍺薄膜上製作矩形的氧化物,並放置於掃描電子顯微鏡腔體中,以兩根鎢針在矽鍺薄膜表面以及其氧化層上在不同定點做電流—電壓量測,根據鎢針接觸面的不同,我們能將電路分成三種類型,分別為SiGe-SiGe (SS)、Oxide-Oxide (OO)與SiGe-Oxide (SO)等三種迴路。從SS電路中我們能得到Metal-Semiconductor (MS)接面的量測,而OO電路能獲得的則是Metal-Insulator-Semiconductor (MIS)接面,SO電路則同時能得到MS與MIS接面的資訊,從三種電路的電性量測中,透過擬合分析的方式能夠解析出蕭特基能障以及穿隧能障的量值,並從其中探討當氧化物在MS接面界面處形成時,蕭特基能障與穿隧能障的變化,並推測出鍺原子的析出與其不平均積聚的現象,因此獲得場致氧化後界面狀態以及結構的變化,同時與穿透式電子顯微鏡之cross section結果做應證。

    Using the scanning probe assisted anodic oxidation, we could locally fabricate patterned SiO2 layer on SiGe thin film with nanometer size. To investigate the electron transport properties of the patterned SiO2 layer on SiGe, we used two tungsten tips assembled in nanomanipulators of SEM system to probe various SiO2 patterns on SiGe substrate. Based on the electrical transportation results, the contact interfaces of tungsten tip/SiGe and tungsten tip/ SiO2 reveal large differences, which is consistent with the cross-sectional TEM images. The I-V measurements also show the interfacial states and structures of oxide layer, which is essential properties of gate dielectric layer when it comes to the applications of SiGe related devices such as CMOS, HBTs.

    第一章 緒論..............................................1 第二章 簡介..............................................2 2.1 矽鍺合金之特性.......................................2 2.2 矽鍺合金之氧化層.....................................3 2.3 在絕緣層內鍺原子之特性................................4 2.4 矽鍺合金之奈米氧化物傳輸性質..........................7 第三章 實驗儀器原理與機制................................10 3.1 原子力顯微鏡(Atomic Force Microscopy).............10 3.2 掃描電子顯微鏡(Scanning Electron Microscopy)........11 3.3 穿透式電子顯微鏡(Transmission Electron Microscopy)..13 第四章 實驗原理與方法....................................17 4.1 矽鍺奈米氧化物之製程.................................17 4.1.1 侷域場致氧化原理(Local Anodic Oxidation).........17 4.1.2 實驗過程與方法....................................18 4.2 矽鍺及其氧化物之電流—電壓量測........................18 4.2.1 掃描電子顯微鏡(SEM)電性量測方法....................18 4.2.2 蕭特基二極體(Schottky Diode) – MS Junction........20 4.2.3 蕭特基二極體(Schottky Diode) – MIS Junction...............................................23 第五章 實驗結果與討論....................................25 5.1 侷域場致氧化矽鍺氧化物製程結果........................25 5.2 TEM量測矽鍺氧化物之結果.............................27 5.3 矽鍺及其氧化物之電流—電壓量測分析.....................28 5.3.1 電流—電壓曲線的模擬與擬合(I-V Curve Simulation and Fitting)...............................................28 5.3.2 熱發射(Thermionic Emission)原理的擬合 – Schottky Emission...............................................33 5.3.3 金屬—半導體(MIS Junction)接面之穿隧效應............36 5.3.4 OO、SS、SO電路之比較.............................44 第六章 結論.............................................47 參考資料................................................49

    [1] F. SchäFFler, Johannes Kepler Universität, Transport properties of silicon–germanium (SiGe) nanostructures and applications in devices, Woodhead Publishing Limited, 2011
    [2] Jia-Yu Zhang and Xi-Mao Bao, and Yong-Hong Ye and Xi-Lin Tan , APPLIED PHYSICS LETTERS VOLUME 73, NUMBER 13, 28 SEPTEMBER 1998
    [3] Filipp Mueller, Georgios Konstantaras, Paul C. Spruijtenburg, Wilfred G. van der Wiel, and Floris A. Zwanenburg, Nano Lett. 2015, 15, 5336−5341
    [4] Minoru Fujii, Osamu Mamezaki, Shinji Hayashi and Keiichi Yamamoto, J. Appl. Phys., Vol. 83, No. 3, 1 February 1998
    [5] 王駿,原子力顯微鏡的原理和應用,振聯科技有限公司
    [6] 中央大學物理系 李其紘,科學研習2013年5月,No. 52-5
    [7] 薛富盛 呂福興 吳宗明 許薰丰 黃榮鑫 趙文愷,掃描式電子顯微鏡 實作訓練教材,五南出版社(2009)
    [8] Ankan Mukhopadhyay, MEASUREMENT OF MAGNETIC HYSTERESIS LOOPS IN CONTINUOUS AND PATTERNED FERROMAGNETIC NANOSTRUCTURES BY STATIC MAGNETO-OPTICAL KERR EFFECT MAGNETOMETER, SUMMER PROJECT REPORT, 2015
    [9] 清華大學博士 羅聖全,研發奈米科技的基本工具之一,電子顯微鏡介紹—TEM,小奈米大世界
    [10] K.N. Astankova, E.B. Gorokhov, I.A. Azarov, V.A. Volodin, A.V. Latyshev, Surfaces and Interfaces 6 (2017) 56–59
    [11] R. Held, T. Heinzel, P. Studerus, K. Ensslin, Physica E 2 (1998) 748—752
    [12] Antonio Di Bartolomeo, Physics Reports 606 (2016) 1–58
    [13] Zhiyong Zhang, Kun Yao, Yang Liu, Chuanhong Jin, Xuelei Liang, Qing Chen, and Lian-Mao Peng, Adv. Funct. Mater. 2007, 17, 2478–2489
    [14] Jozef Osvald , Phys. Status Solidi A 212, No. 12, 2754–2758 (2015) / DOI 10.1002/pssa.201532374
    [15] Adenilson J Chiquito, Cleber A Amorim, Olivia M Berengue, Luana S Araujo, Eric P Bernardo and Edson R Leite, J. Phys.: Condens. Matter 24 (2012) 225303
    [16] Takayuki Nagano, Michiko Tsutsui, Ryo Nouchi, Naoko Kawasaki,Yohei Ohta, Yoshihiro Kubozono, Nobuya Takahashi,and Akihiko Fujiwara, J. Phys. Chem. C 2007, 111, 7211-7217
    [17] Douglas J. Paul, Adv. Mater. 1999, 11, No. 3
    [18] Michele Amato, Matteo Bertocchi, and Stefano Ossicini, J. Appl. Phys. 119, 085705 (2016)
    [19] Jehyun Lee, Thomas Uhrmann, Theodoros Dimopoulos, Hubert Brückl, and Josef Fidler, IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 6, JUNE 2010
    [20] Donald A. Neamen, Fundamentals of Semiconductor Physis and Devices Second Edition, published by McGraw-Hill Companies, P382-383
    [21] Subhash Chand, Saroj Bala, Physica B 390 (2007) 179–184
    [22] H. C. CARD and E. H. RHODERICK, J. Phys. D: Appl. Phys., 1971, Vol. 4

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE