| 研究生: |
楊蕙萍 Yang, Huei-Ping |
|---|---|
| 論文名稱: |
呼吸式硼氫化鈉燃料電池之研究 Study on Air-Breathing Direct Borohydride Fuel Cell |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 呼吸式 、直接硼氫化鈉燃料電池 、陰極端設計 、操作參數 、計算流體力學 |
| 外文關鍵詞: | Air-breathing, DBFC, Cathode design, Operational parameters, CFD |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目標為建立一套完整的淨輸出功率為 3W 的呼吸式直接硼氫化鈉燃料電池系統,主要可用於手持 3C 產品之發電系統,此種質子交換膜燃料電池具有高體積能量密度與功率密度,適合應用在 3C 產品電源供應裝置。陰極供給空氣,將可節省陰極燃料槽之空間與重量。
研究內容為,設計新型呼吸式燃料電池,並與傳統型做比較。因實驗內容與空氣流場有關,故使用 Fluent 軟體,進行流場數值分析,探討陰極端空氣質量流率。此研究為模擬與實驗並進之研究。
呼吸式燃料電池單電池本體機械幾何結構,首先參考相關文獻以完成燃料電池之各零組件的結構設計並且測試是否達到文獻中之性能,以做為電池基本結構有無問題之確認,找出最佳的操作參數使電池系統達到最好的能量轉換效率,研究中探討兩種不同觸媒之 MEA,並探討操作參數對性能之影響,其中測試參數包括 (1) 陰極端氣體支撐層測試實驗 (2) Contact layer 測試實驗 (3) 電池開放式集電板幾何設計之影響及擺放方式測試實驗 (4) 陽極端燃料濃度測試實驗 (5) 電池操作溫度測試實驗 (6) 陽極端燃料流率之測試實驗;探討燃料電池性能與元件操作參數,利用 I-V-P 性能曲線測試使電池整體達到穩定及最有效率的運作,也將訂定呼吸式 DBFC 的操作標準程序,作為未來建立燃料電池整體發電系統及周邊設備之參考依據。
The proposed research aims to develop an Air
Breathing Direct Sodium Borohydride Fuel Cell (Air Breathing DBFC) system that can generate a net
electric power of 3 Watts. This type of proton exchange membrane fuel cell is usually characterized by a high volumetric energy density and a high power density. Such characteristics can potentially lead to the creation of efficient portable auxiliary electric power system for 3C products. Moreover, the use of air as oxidant drastically reduces the size and the weight of the fuel cell system by removing the oxidant fuel tank.
In the current work, two different fuel cell designs have been created and compared. In addition to a traditional design, an alternative design is proposed in order to improve the air flow near the reacting area. Fluent CFD software was used to analyze and compare the air flow field.
Prototypes of an Air Breathing DBFC single cell were then manufactured, tested and compared with relevant literature references. In order to find the optimal design and operating conditions, a series of experiments was conducted.
The test matrix is composed of 6 variables: (1) the GDB of the cathode, (2) the presence of a Contact layer, (3) the orientations of the fuel cell, (4) the concentrations of the fuel, (5) the temperature of the fuel cell and (6) the fuel flow rate.
In the best conditions, the prototype delivers a bit more than the 3 Watts with a reacting area of only 25cm². The feasibility of the concept is thus proven and the
foundations for a future commercial development of the Air Breathing DBFC products are put in place.
[1] C.Celik, F.G.B.San, H.I.Sarac, “Effects of operation conditions on direct borohydride fuel cell performance” , Journal of Power Sources 185 (2008) 197–201
[2] C.Celik, F.G.B.San, H.I.Sarac, “In?uences of sodium borohydride concentration on direct borohydride fuel cell performance” , Journal of Power Sources 195 (2010) 2599–2603
[3] K.T.Park, U.H.Jung, S.U.Jeong, S.H.Kim, “In?uence of anode diffusion layer properties on performance of direct borohydride fuel cell” , Journal of Power Sources 162 (2006) 192–197
[4] B.H. Liu, Z.P. Li, K. Arai, S. Suda, “Performance improvement of a micro borohydride fuel cell operating at ambient conditions” , Electrochimica Acta 50 (2005) 3719–3725
[5] S.C.Amendola, P.Onnerud, M.T.Kelly, P.J.Petillo, S.L.Sharp-Goldman, M.Binder, “A novel high power density borohydride-air cell” , Journal of Power Sources 84 (1999) 130–133
[6] B.H.Liu, Z.P.Li, S. Suda, “Development of high-performance planar borohydride fuel cell modules for portable applications” , Journal of Power Sources 175 (2008) 226–231
[7] H.Cheng, K.Scott, “In?uence of operation conditions on direct borohydride fuel cell performance” , Journal of Power Sources 160 (2006) 407–412
[8] M.Noponen, T.Mennola, M.Mikkola, T.Hottinen, P.Lund, “Measurement of current distribution in a free-breathing PEMFC” , Journal of Power Sources 106 (2002) 304–312
[9] Z.P.Li, B.H.Liu, J.K.Zhu, S.Suda, “Depression of hydrogen evolution during operation of a direct borohydride fuel cell” , Journal of Power Sources 163 (2006) 555–559
[10] H.Cheng, K.Scott, K.Lovell, “Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells” , FUEL CELLS No.5 (2006) 367–375
[11] S.U.Jeong, E.A.Cho, H.J.Kim, T.H.Lim, I.H.Oh, S.H.Kim, “Effects of cathode open area and relative humidity on the performance of air-breathing polymer electrolyte membrane fuel cells” , Journal of Power Sources 158 (2006) 348–353
[12] B.Babcock, A.J.Tupper, D.Clark, T.Fabian, R.O’Hayre, “Optimization of Passive Air Breathing Fuel Cell Cathodes” , Journal of Power Sources 162 (2006) 192–197
[13] A.Schmitz, M.Tranitz, S.Wagner, R.Hahn, C.Hebling, “Planar self-breathing fuel cells” , Journal of Power Sources 118 (2003) 162–171
[14] T.Hottinen, O.Himanen, P.Lund, “Effect of cathode structure on planar free-breathing PEMFC” , Journal of Power Sources 138 (2004) 205–210
[15] H.Cheng, K.Scott, “In?uence of operation conditions on direct borohydride fuel cell performance” , Journal of Power Sources 160 (2006) 407–412
[16] 陳嘉宏, “直接硼氫化鈉-過氧化氫燃料電池之研究”,國立成功大學航空太空工程研究所碩士論文,2005
[17] J.Ma, N.A.Choudhury, Y.Sahai, “A comprehensive review of direct borohydride fuel cells” ,Renewable and Sustainable Energy Reviews 14 (2010) 183–199
[18] 黃鎮江,“綠色能源”,初版,全華圖書股份有限公司,pp.1-4-1-21,2008
[19] 黃鎮江,“燃料電池”,第二版,全華科技圖書股份有限公司,2007
[20] 林昇佃等人,“燃料電池:新世紀能源”,初版,滄海書局,pp.1-30-1-35,2004
[21] Y.Kojima,K.I.Suzuki, K.Fukumoto, Y.Kawai, M.Kimbara, H.Nakanishi, S.Matsumoto, “Development of 10 kW-Scale Hydrogen Generator using Chemical Hydride” , Journal of Power Sources 125 (2004) 22–26
[22] C.Y.Wen, Y.S.Lin, C.H.Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack” , Journal of Power Sources 192 (2009) 475–485
[23] G.J.Wang, Y.Z.Gao, Z.BWang, C.Y.Du, G.P.Yin, “A Membrane Electrode Assembly with High Fuel Coulombic Efficiency for Passive Direct Borohydride Fuel Cells” , Electrochemistry Communications 12 (2010) 1070–1073
[24] S.Towne, M.Carella, W.E.Mustain, V.Viswanathan, P.Rieke, U.Pasaogullari, P. Singh, “Performance of a Direct Borohydride Fuel Cell” , ECS Transactions 25 (2009) 1951-1957
[25] H.Y.Qin, Z.X.Liu, W.X.Yin, J.K.Zhu, Z.P.Li, “Effects of Hydrazine Addition on Gas Evolution and Performance of the Direct Borohydride Fuel Cell”, Journal of Power Sources 185 (2008) 895–898
[26] B.H.Liu, S.Suda, “Influences of Fuel Crossover on Cathode Performance in a Micro Borohydride Fuel Cell”, Journal of Power Sources 164 (2007) 100–104
[27] W.Haijun, W.Cheng, L.Zhixiang, M.Zongqiang, “Influence of Operation Conditions on Direct NaBH4/H2O2 Fuel Cell Performance”, journal of hydrogen energy 35 (2010) 2648-2651
[28] N.Luo, G.H.Miley, K.J.Kim, R.Burton, X.Huang, “NaBH 4 /H 2 O 2 Fuel Cells for Air Independent Power Systems”, Journal of Power Sources 185 (2008) 685–690
[29] H.Cheng, K.Scott, K.Lovell, “Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells”, Fuel Cells 5 (2006) 367–375
[30] D.J.Brodrecht, J.J.Rusek, “Aluminum–Hydrogen Peroxide Fuel-Cell Studies”, Applied Energy 74 (2003)113–124
[31] 衣寶廉,“燃料電池-原理與應用”,五南圖書出版股份有限公司,pp.4-179 ─ 4-180,2005
[32] 東芝首次推出燃料電池「Dynario」(民 97 年 10 月 24 日),大紀元 , 民 102 年 3 月 20 日 , 取自 : http://www.epochtimes.com/gb/9/10/24/n2698990.htm
[33] 亞太燃料電池科技股份有限公司(無日期),亞太燃料電池機車ZES V , 民 102 年 3 月 20 日 , 取自 : http://www.npf.org.tw/post/12/7968
[34] 工業技術研究院能源與環境研究所(無日期),1kW 可攜式燃料電 池 緊 急 發 電 機 , 民 102 年 3 月 20 日 , 取自:http://www.tfci.org.tw/Fc/fc2-2.asp
[35] FuelCellToday (n.d.), History , from the World Wide Web: http://www.fuelcelltoday.com/about-fuel-cells/history
[36] 陳建豪(無日期),輕型燃料電池車輛發展現況,亞太燃料電池科 技 股 份 有 限 公 司 , 民 102 年 6 月 27 日 , 取自 : http://blog.ncue.edu.tw/sys/lib/read_attach.php?id=12259
[37] 約 瑟 儀 器 儀 錶 廠 ( 無 日 期 ) , FL2 分 流 器 SHUNT , 取自 : http://www.shmeter.net/html/ProductView.asp?Id=827&ClassId=32