| 研究生: |
徐以軒 Syu, Yi-Syuan |
|---|---|
| 論文名稱: |
氫氣環境下一氧化碳電化學感測行為之研究 Studies on Carbon Monoxide Electrochemical Sensing Behavior in Hydrogen-rich Environment |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 一氧化碳 、氫氣 、電化學感測 |
| 外文關鍵詞: | Carbon monoxide, Hydrogen, Electrochemical Detection |
| 相關次數: | 點閱:49 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一氧化碳對白金觸媒電極毒化能力相當強,因此研發可感測氫氣中一氧化碳濃度之感測器對質子交換膜型燃料電池是絕對必要的。本研究以Pt/ Nafion®作為感測電極,Nafion®117的另一側填滿硫酸,內含有白金絲對電極和Ag/AgCl參考電極,探討在富氫環境下對一氧化碳之電化學行為,並探討不同一氧化碳感測方法的特性。
線性電位掃描在純氫氣下-0.3 ~ 0.9 V (vs. Ag/AgCl) 間,電流與電位呈線性關係,當一氧化碳存在氫氣中,電流在比0.4 V (vs. Ag/AgCl) 負的電位出現毒化現象,接近0.4 V (vs. Ag/AgCl)時為定值,且電流在50 ppm CO/H2內變化劇烈。當電位較0.4 V (vs. Ag/AgCl) 正時,CO開始氧化剝除而使白金去毒化,電流與電位回復線性關係。
本研究採取兩種定電位法週期式感測方法,方法一是將感測電流對濃度對數作感測曲線,方法二是將感測電流除以背景電流之電流下降百分比對濃度對數作感測曲線;感測濃度範圍在100 ~ 1000 ppm CO/H2內,兩種方法皆可得良好線性,方法一靈敏度隨電位趨正而提升,於0.8 V (vs. Ag/AgCl) 下有最大靈敏度19.53 mA/ln[CO];方法二之靈敏度在0.6 ~ 0.9 V (vs. Ag/AgCl) 內為定值10.4 %/ln[CO]。
週期式感測選用基準濃度可消彌電流回復到無毒化過久的問題,選用基準濃度感測高濃度CO可得較短的應答時間與回復時間,分別為30秒內及100秒內,比現有CO/H2感測器都快。
在0.8V (vs. Ag/AgCl) 下以定電位法探討濕度與流速對感測行為之影響,相對濕度32.8% ~ 100%之間的感測電流為定值,回復時間則由0%溼度之142秒拉長到100%濕度之403秒;在50 ~ 200ml/min的流速不影響感測電流,由溼度與流速對感測電流影響不大,可推論ㄧ氧化碳毒化現象非擴散控制。
評估兩種感測方式,評估以電流下降百分比作為感測方式具有0.6 ~ 0.9 V (vs. Ag/AgCl) 下固定的靈敏度、600秒快速連續式感測之優勢,且相較於現有文獻之感測方法,具有高耐水性和成本較低等商業化潛力。
Carbon monoxide is highly poisonous to platinum catalyst, so developing a sensor to detect CO in hydrogen is necessary. The sensing device in this study was composed of Pt/Nafion® as working electrode, a Pt wire as counter electrode and Ag/AgCl reference electrode which was immersed in sulfuric acid divided by Nafion® membrane. This research focused on the CO electrochemical behavior and the sensing method in H2-rich environment.
Current was linear to vlotage in the range of -0.3 ~ 0.9 V (vs. Ag/AgCl) in linear voltammogram. When CO existed in H2, current lost linearity due to CO-posioning when the potential was more negative than 0.4 V (vs. Ag/AgCl). The current varied tremendously within 0 ~ 50ppm CO/H2. When the voltage was more positive than 0.4 V (vs. Ag/AgCl), CO oxidized on platinum and current regained linearity to voltage.
This study defined two sensing methods as calibration curve in periodical chronoamperogram: method I is taking sensing current versus logarithmic of CO concentration, method II is taking current decreased ratio versus logarithmic of CO concentration. Both two methods had good linearity. In method I, sensitivity increased with applied potential and the maximum sensitivity is 19.53 mA/ln[CO] at 0.8 V (vs. Ag/AgCl). In method II, sensitivity was constant, 10.4 %/ln[CO], for applied potential in the range of 0.6 ~ 0.9 V (vs. Ag/AgCl).
Periodical sensing by chronoamperogram using a specific CO concentration as background concentration solved the problem that long recover time. The response time was lower than 30 sec and recover time was lower than 100 sec, much smaller than other CO/H2-type sensors.
In chronoamperogram, humidity only effected rescover time. When humidity varied from 0% to 100%, recover time increased from 142 sec to 403 sec. The flow rate in the range of 50 and 200ml/min did not influence the sensing current and recover time. The detection method was not diffusion control due to the indepence of flow rate and humidity on the current.
The method with current decreased ratio versus logarithmic of CO concentration have several advantages: constant sensitivity in the range of 0.6 ~ 0.9 V (vs. Ag/AgCl), quick detection within 600sec, low cost and high humidity endurance compared to the other existing detection methods. By these advantages and good linearity, the detection in this study was promising.
1. J. Larminie, A. Disk, “Fuel Cell system Explained”, John Wiley &Son, p.1 (2001).
2. 林成原、陳永和,車用替代性燃料發展現況與展望,能源季刊,民91年。
3. F. Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
4. R. Jain, B. Mandal, Studies on Ideal and Actual Efficiency of Solar Polymer Electrolyte Fuel Cell, Alternative Energy eMagazine (2007).
5. 楊志忠、林頌恩、韋文誠,燃料電池的發展現況,科學發展2003年7月,367期。
6. T. Ichikawa, S. Isobe, N. Hanada, H. Fujii, Lithium nitride for reversible hydrogen storage, Journal of Alloys and Compounds 365, 271–276 (2004).
7. A. Zaluska, L. Zaluski, J.O. Strom–Olsen, Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds 288, 217–225 (1999).
8. G. Liang, J. Huot, S. Boily, A.Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems, Journal of Alloys and Compounds 292, 247–252 (1999).
9. 張宇杉,自製與商用奈米碳管材料之儲氫特性分析,中原大學奈米科技碩士學位學程碩士論文(2010)。
10. 楊鉉台,表面改質奈米碳管之合成技術及其提昇儲氫性能之研究,元智大學化學工程與材料科學系碩士論文 (2005)。
11. C. Liu et al., “Hydrogen uptake in vapor-grown carbon nanofibers”, Carbon 37, 1649 (1999).
12. C. Liu et al., “Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature”, Science 286, 1127(1999).
13. F. Zaragoza Martina,b, J. W. Dijkstra, J Boon, J. Meuldijk, A membrane reformer with permeate side combustion for CO2 capture: modeling and design, Energy Procedia 4, 707–714 (2011).
14. A. V. Pattekar, M. V. Kothare, S. V. Karnik, M. K. Hatalis, A microreactor for in-situ hydrogen production by catalytic methanol reforming, Proceedings of the 5th International Conference on Microreaction Technology (2001).
15. 伍世浩,氣助式霧化應用於甲醇重組器製氫之研究,國立成功大學航空太空工程研究所碩士論文(2008)。
16. C. T. Holt, A. M. Azad, S. L. Swartz, R. R. Rao, Prabir, K. Dutta, Carbon monoxide sensor for PEM fuel cell systems, Sensors and Actuators B 87, 414–420 (2002).
17. E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, Methods to Advance Technology of Proton Exchange Membrane Fuel Cells, J. Electrochemical. Soc, vol. 135, p.2209 (1998).
18. M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer electrolyte fuel cell electrodes” J. Appl. Electrochemistry, 22, p.1-7 (1992).
19. H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas, J. Electrochemical Soc. Vol. 143, No. 12, p3838 (1996).
20. H. A. Gasteiger, N. Markovic, P. N. Ross, Jr., and E. J. Cairns, CO Electrooxidation on Well-Characterized Pt-Ru Alloys, J. Phys. Chem. Vol. 98 p617-625 (1994).
21. M.S. Liao, C. R. Cabrera, Y. Ishikawa, A theoretical study of CO adsorption on Pt, Ru and Pt-M (M=Ru, Sn, Ge) clusters”, Surface Science Vol.445 p267-282 (2000).
22. R. Ianniello, V. M. Schmidt, U. Stimming, J. Stumper and A. Wallau CO Adsorption and Oxidation on Pt and Pt-Ru Alloys: Dependence on Substrate Composition” , Electrochimica Acta, Vol.39 p1863-1869 (1994).
23. W. F. Lin, T. Iwasita, and W. Vielstich, Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study, J. Phys. Chem. Vol.103 p3250-3257 (1999).
24. H.A. Gasteiger, N. M. Markovic, P.N. Ross, Jr, H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62°C, J. Phys. Chem. Vol.99 p16757-16767 (1995).
25. Y. Morimoto, E. B. Yeager, CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes, Journal of Electroanalytical Chemistry Vol.441, p77-81 (1998).
26. E. M. Crabb, R. Marshall, and D. Thompsett, Carbon Monoxide Electro-oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry, Journal of The Electrochemical Society Vol. 147 p4440-4447 (2000).
27. P. Gouerec, M. C. Denis, D. Guay, J. P. Dodelet, and R. Schulz, High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO, Journal of The Electrochemical Society Vol.147 p3989-3996 (2000).
28. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr., Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface, J. Phys. Chem vol.101 p3910-3913 (1997) .
29. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr., Electrooxidation of H2/CO, and H2/CO Mixtures on a Well-Characterized Pt70Mo30 Bulk Alloy Electrode, J. Phys. Chem. Vol.102 p2494-2501 (1998).
30. B. N. Grgur, N. M. Markovic and P. N. Ross, Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys, Electrochimica Acta vol.43 p3631-3635 (1998).
31. 黃彥智,抗甲醇毒化DMFC陰極觸媒合成及ORR活性探討,國立中央大學化學工程與材料工程研究所碩士論文 (2010)。
32. H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr., H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62°C, J. Phys. Chem. Vol.99 p16757-16767 (1995).
33. R. Greef, R. M. Peat, L. M. Peter, D. Pletcher, J. Robinson, In Instrumental methods in Electrochemistry, John Wiley & Sons, Inc.: New York , (1985).
34. T. Kim, J. S. Hwang and S. Kwon, A MEMS methanol reformer heated by decomposition of hydrogen peroxide, Lab Chip, 7, 835-841, (2007) .
35. S. Gottesfeld and J. Pafford , A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures, J. Electrochem. Soc. P2651 (1988).
36. E. Novillo, M. Pardo, Novel Approaches for the Integration of High Temperature PEM Fuel Cells Into Aircrafts, J. Fuel Cell Sci. Technol. Vol 8, Issue 1, 011014 (2011).
37. S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. Ⅱ. The “Reactant-pair” Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol, J. Phy. Chem., 68, 70-80 (1964).
38. 鵬騰科技全球資訊網, http://www.microsense.com.tw/co.htm, 連線日期:Jul, 7, 2011.
39. 中華民國環保法規資料中心, 空氣污染防制法施行細則, http://law.epa.gov.tw/zh-tw/laws/495268338.html, 連線日期:Jul, 7, 2011.
40. N. Miura, T. Raisen, G. Lu, N. Yamazoe, Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes, Sensors and Actuators B 47, 84–91 (1998) .
41. 眭曉林,固態化學感測元件之積體化設計,材料與科學,第60期,56-61頁 (1991)。
42. I. Lundstrom, M. S. Shivaraman and L. Lundkvist, A Hydrogen- Sensitive MOS Field-Effect Transistor, Applied Physics Letters, 26, 55-57 (1975).
43. C. Chistofides and A. Mandelis, Solid-State Sensors for Trace Hydrogen Gas Detection, Journal of Applied Mechanics and Technical Physics, 68, R1-R30 (1990).
44. 林士達,陽極氧化法製備二氧化鈦奈米管陣列氫氣感測器之研究,國立成功大學化學工程學系碩士論文 (2009)。
45. 吳昭誼,應用液相化學輔助氧化法於砷化鎵金氧半場效電晶體元件特性之研究,國立成功大學電機工程學系博士論文(2001)。
46. Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, A Novel Oxygen Gas Sensor Utilizing Thin Film Diamond Diode with Catalyzed Tin Oxide Electrode, Sensors and Actuators, B, 35-36, 303-307 (1996) .
47. Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, A New Diode-Based Carbon Monoxide Gas Sensor Utilizing Pt-SnOX/Diamond, Sensors and Actuators B, 56, 151-154 (1999) .
48. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,第120 ~ 133頁 (1993)。
49. Y. S. Fung and C. C. Wong, Determination of Carbon Monoxide in Ambient Air Using Piezoelectric Crystal Sorption Detection, Analytica Chimica Acta, 456, 227-239 (2002).
50. 林澤沈,製備奈米Pt/C電極及應用於電流式氫氣感測器及其感測特性,東海大學化學工程學系碩士論文 (2006)。
51. P. Gode, G. Lindbergh and G. Sundholm, In-Situ Measurements of Gas Permeability in Fuel Cell Membranes Using a Cylindrical Microelectrode, Journal of Electroanalytical Chemistry, 518, 115-122 (2002) .
52. E. J. Taylor, E. B. Anderson and N. R. K. Vilambi, Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange- Membrane Fuel Cells, J. Electrochem. Soc., 139, 5 (1992) .
53. C. Yang, P. Costamagn, S. Srinivasan, J. Benziger, A.B. Bocarsly, Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, Journal of Power Sources 103 1–9 (2001) .
54. K. C. Kim, S. M. Cho, H.G. Choi, Detection of ethanol gas concentration by fuel cell sensors fabricated using a solid polymer electrolyte, Sensors and Actuators B 67 194–198 (2000) .
55. A. Eisenberg, and H. L. Yeager, Perfluorinsted Ionomer Membranes, ACS Symp. Ser., NO180, American Chemical Society, Washington DC (1982) .
56. V. N. Fateev, O. V. Archakov, E. K. Lyutikova, L. N. Kulikova and V. I. Porembskii, Water Electrolysis in Systems with Solid Polymer Electrolyte, Russian J. Electrochem., Vol. 29, pp. 702~ 709 (1993) .
57. T. Yamato, C. Hideshima, G. K. S. Prakash, G.A. Olah, Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes, Org. Chem., 56 (6), pp 2089–2091, (1991) .
58. J. Jorissen, Ion Exchange Membranes as Solid Polymer Electrolytes in Electro-Organic Method to Organic Electrochemistry(XIV), J. Electrochemica Acta, Vol. 41, No. 4, pp. 553 (1996).
59. Z. Ogumi, T. Kuroe, Z.I. Takehara, Gas Permeation In SPE Method-Ⅱ. Oxygen and Hydrogen Permeation Through Nafion, J. Electrochem. Soc., Vol. 132, No. 11, pp. 2601~2605 (1985).
60. H. Yan and C. C. Liu, A solid polymer electrolyte-bases electrochemical carbon monoxide sensor, Sensors and Actuators B: Chemical Vol17, Issue 2 ,Pages 165-168, (1994) .
61. F. Opekar, Detection of Hydrogen in Air with a Detector Containing a Nafion Membrane Metalized on Both Sides, J. Electroanal. Chem., Vol. 260, pp.451 (1989).
62. Z. Z. Ogumi, K. Inatomi, J. T. Hinatsu and Z. I. Takehara, Application of the SPE Method to Organic Electrochemistry—ⅩⅢ. Oxidation of Geraniol on Mn, Pt-Nafion, Electrochimica Acta, Vol. 37(7), pp. 1295 (1992).
63. R. Liu, W. H. Her, and P. S. Fedkiw, In Situ Electrode Formation on a Nafion Membrane by Chemical Platinization, J. Electrochem. Soc., Volume 139, Issue 1, pp. 15-23 (1992) .
64. P. Millet, R. Durand, E. Dartyge, G. Tourillon and A. Fontaine, Precipitation of Metallic into Nafion Ionomer Membranes-I. Experimental Results, J. Electrochem. Soc., Vol. 140(5), pp. 1373~1380 (1993).
65. P. Millet, A. Michas and R. Durand, A Solid Polymer Electrolyte-Based Ethanol Gas Sensor, J. Appl. Electrochem., Vol. 26, pp. 933 (1996).
66. N.Fujiwara, K Yasuda, T Ioroi, Z Siroma,Y. Miyazaki, ration of platinum–ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode, Electrochimica Acta 47, 4079-4084 (2002) .
67. O. Enea, D. DuprFz, R. Amadelli, Gas phase electrocatalysis on metal/Nafion membranes, Catalysis Today 25 271-276, (1995) .
68. Y. C. Weng, K. C. Hung, J. C. Wang, Y. G. Lee, Y. F. Su, C. Y. Lin, Binary platinum–ruthenium/Nafion electrodes for the detection of hydrogen, Sensors and Actuators B 150, 264–270 (2010) .
69. J. Llorca, N. Homs , J. Araňa, J. Sales, P. Ramırez de la Piscina, FTIR study of the interaction of CO and CO2 with silica-supported PtSn alloy, Applied Surface Science 134 217–224 (1998).
70. Y. Morimoto, E. B. Yeager, Comparison of methanol oxidations on Pt, Pt|Ru and Pt|Sn electrodes, Journal of Electroanalytical Chemistry 444 95-100 (1998).
71. S. A. Bilmes and A. J. Arvia, The Electro-oxidation of CO-adsorbates on Different Platinum Electrodes in Acid Solution, Journal of Electroanalytical Chemistry, 361, 159-167 (1993).
72. G. Kohlmayr and P. Stonehart, Adsorption Kinetics for Carbon Monoxide on Platinum in Hot Phosphoric Acid, Electrochemica Acta, 18, 211-223 (1973).
73. G. Estiu, S. Maluendes, E. A. Castro and A. J. Arvia, A Quantum-Chemistry Approach to the Electro-Oxidation Mechanism of Adsorbed Carbon Monoxide on Platinum Single-Crystal Clusters, J. Electroanal. Chem., 238, 303-318 (1990).
74. B. Beden and C. Lamy, The electrooxidation of CO: A Test Reaction in Electrocatalysis, Electrochimica Acta, 35, 4, 691-704 (1990) .
75. 蕭逢祥,平板式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文(2003)。
76. J. St-Pierre, Proton exchange membrane fuel cell contamination model: Competitive adsorption followed by a surface segregated electrochemical reaction leading to an irreversibly adsorbed product, Journal of Power Sources 195, 6379–6388 (2010) .
77. H. Igarashi, T. Fujino and M. Watanabe, Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide, Journal of Electroanalytical Chemistry 391, 119-123 (1995).
78. R. Mukundan, E. L. Brosha, F. H. Garzon, Carbon monoxide sensors for application in polymer electrolyte membrane fuel cells, Electrochemical Society Proceedings Vol. 08, p. 49 (2004).
79. R. Mukundan, E. L. Brosha, F. H. Garzon, A low temperature sensor for the detection of carbon monoxide in hydrogen, Solid State Ionics 175, 497–501 (2004).
80. C. Pijolat, G. Tournier, J.P. Viricelle, CO detection in H2 reducing atmosphere with mini fuel cell, Sensors and Actuators B 156, 283–289 (2011).
81. P. K. Dutta, R.R. Rao, S.L. Swartz, C.T. Holt, Sensing of carbon monoxide gas in reducing environments, Sensors and Actuators B 84, 189–193 (2002).
82. C.V. Gopal Reddy, P. K. Dutta, S. A. Akbar, Detection of CO in a reducing, hydrous environment using CuBr as electrolyte, Sensors and Actuators B 92, 351–355 (2003).
83. 林燦國,電化學式一氧化碳感測元件之設計與研究,國立成功大學化學工程研究所碩士論文(1997)。
84. 曾坤億,半乾式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文(1999)。
85. 王瓊紫,以錫修飾白金電極對一氧化碳感測之研究,國立成功大學化學工程研究所碩士論文(2000)。
86. E. I. Gabrelli, C. Keddam, M.Takenouti, The study of passivation process by the electrode impedance analysis, in comprehensive treatise of electrochemistry, vol. 4, plenum Press, New York, p.151, (1981).
87. L. Greenspan, Humidity Fixed Points of Binary Saturated Aqueous Solutions, Journal of Research of the National Bureau of Standards-A. Physics and Chemistry Vol. 81 A, No. 1, January-February (1977).
88. Wikipedia, http://en.wikipedia.org/wiki/Carbon_dioxide連線日期:Jul, 7, 2011.
89. U. J. Jauregui-Haza E. J. Pardillo-Fontdevila, A. M. Wilhelm and H. Delmas, Solubility of Hydrogen and Carbon Monoxide in Water and some Organic solvents, Latin American Applied Research 34:71-74 (2004).