| 研究生: |
羅世奇 Luo, Shih-Chi |
|---|---|
| 論文名稱: |
活化態熱原性鏈球菌外毒素B (SPE B) 的製備與結構測定 Preparation and Structure Determination of Active Streptococcal Pyrogenic Exotoxin B |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 化膿性鏈球菌外毒素B 、核磁共振儀 、半光胺酸蛋白 、自動催化反應 、選擇性氮15-標定胺基酸蛋白 |
| 外文關鍵詞: | selectively 15N-labeled amino acids proteins, autocatalysis, cysteine protease, NMR, Streptococcal pyrogenic exotoxin B |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱原性鏈球菌外毒素B (Streptococcal pyrogenic exotoxin B 簡稱SPE B),它是由化膿性鏈球菌(Streptococcus pyogenes)所產生的一種細胞外毒素,根據催化區分析將它歸屬於半光胺酸蛋白酶的一種。SPE B會經過自動催化(autocatalysis)或蛋白酶分解(proteolysis)作用,將40 kDa的酶原(zymogen form SPE B簡稱zSPE B或ProSPE B)去掉118個胺基酸的propeptide變成28 kDa活化態的蛋白酶(簡稱mSPE B)。SPE B在In vitro下可以分解細胞間質的主成份fibronectin及vitronectin、作用於interleukin-1β (IL-1β) precursor並產生活化型的IL-1β而加重發炎反應、誘導吞噬細胞進行apoptosis及降低其吞噬能力等,故SPE B被認為是化膿性鏈球菌的重要毒性因子而成為極具吸引力的治療標的。
為瞭解SPE B結構與功能間的相互關係,我們將SPE B和其突變蛋白分別送入大腸桿菌系統誘發蛋白表現,經過Ni+2-chelate affinity 管柱純化,再利用質譜儀來確認該蛋白的分子量,結果顯示實驗值完全符合計算值的分子量。SPE B在純化過程中會自動轉換成28 kDa的活化態形式,為了瞭解由酶原轉變成活化態的機制,我們成功地用1mM汞離子當抑制劑純化出酶原形式的ProSPE B。接著進行其酵素活性分析,結果發現:SPE B的活化機制會藉由分子間與分子內的自動催化作用而達成。
另一方面,為了知道SPE B對不同受質的專一性,有必要針對酶原與活化態SPE B之間的結構差異做比較。由於ProSPE B的突變蛋白(C192S)已有X-ray的三維結構,於是我們將焦點放在活化態SPE B和其抑制劑(E-64)的複合體溶液結構。目前利用同位素標定蛋白(2H,13C,15N triple- and 13C,15N double-labeled samples)完成數個多維異核核磁共振光譜實驗如:HNCA, HNCOCA, HNCACB, CBCACONH, 15N-edited NOESY- and TOCSY-HSQC等,然後再進行圖譜解析與氨基酸的循序判定(sequential assignment)。此外,為了提供更多資訊做為判定時的參考,我們也使用專一標定的胺基酸來純化SPE B,以得知特定胺基酸在HSQC圖譜上的位置(例如已完成15N-labelled Gly, Ala, Val, Leu, Met, Phe, Tyr, Lys, Gln, Asp, Ile等的HSQC圖譜),而目前我利用這些圖譜已完成大約95 %活化態熱原性鏈球菌外毒素B的氨基酸循序判定。近來由於抗生素的濫用,導致許多致病細菌產生抗藥性,本研究的結果將可做為設計屬於SPE B專一性藥物 (rational drug design)的基礎。
Streptococcal pyrogenic exotoxin B (SPE B) is an extracellular cysteine protease produced by the pathogenic bacterium streptococcus pyogenes. SPE B is initially expressed as a 40 kDa zymogen (ProSPE B), and subsequently converted to 28 kDa active protease (mSPE B) by autocatalysis or proteolysis. SPE B was shown in vitro to cleave human fibronectin and to degrade vitronectin. It also participates in the dissemination, colonization, and invasion of bacteria and the inhibition of wound healing. This suggests that SPE B serves as an important virulence factor in streptococcal infections, making it an attractive therapeutic target.
In order to investigate the structure and function relationships of SPE B, we expressed SPE B and its mutants in E. coli and purified them to homogeneity. The molecular weights of these proteins were confirmed by mass spectrometry. Their observed values are in excellent agreement with the calculated values. Recombinant ProSPE B was expressed as a 42 kDa zymogen and converted to a 28 kDa SPE B during the course of purification. In this study we obtained the ProSPE B by adding 1mM HgCl2 as inhibitor in solution to inhibit the autoprocessing of ProSPE B. We also observed that the maturation of ProSPE B involves seven intermediates with a combination of intra- and inter-molecular processings. To elucidate the diverse substrate specificities of SPE B, it is essential to compare the structural differences between ProSPE B and mature SPE B. Since the 3D structure of the C192S mutant of ProSPE B has been determined by X-ray diffraction, we used NMR spectroscopy to study the solution structure of the complex of mature SPEB and cysteine protease inhibitor E-64. The 1H, 13C, and 15N resonances of SPE B were assigned by 3D heteronuclear HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH, and 15N-edited NOESY- and TOCSY-HSQC experiments with 2H/13C/15N- and 13C/15N-labeled samples. In addition, we obtained the 1H-15N HSQC spectra of selective 15N-labeled amino acids (Gly, Ala, Val, Leu, Met, Phe, Tyr, Lys, Gln, Asp, and Ile) to facilitate the sequential assignment. Up to now, these experiments provided about 95 % backbone assignment of 28 kDa C192S SPE B.
Kagawa , T. F., and Edward N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease PNAS 97: 2235–2240 , 2000
John D. Doran1, and Edmund Ziomek1. Autocatalytic processing of the streptococcal cysteine protease zymogen. Processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263: 145-151, 1999.
Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. Isolation of two hemolytic forms of streptolysin O. Infect. Immun. 46: 394-400, 1984.
Burns, E. H., Marciel, Jr., A. M., and Musser, J. M. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744-4750, 1996.
Cone, L. A., Woodard, D. R., Schlivert, P. M., and Tomory, G. S. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317: 146-149, 1987.
Dale, J. B., Washburn, R. G., Marques, M. B., and Wessels, M. R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-1501, 1996.
D’Costa, S. S. and Boyle, M. D. Interaction of a group A streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24: 341-349, 1998.
DeAngelis, P. L., Yang, N., and Weigel, P. H. The Streptococcus Pyogenes hyaluronidase synthetase: sequence comparison and conservation among various group A strains. Biochem. Biophy. Res. Commun. 199:1-10, 1994.
Elliott, S. D. and Dole V. P. An inactive precursor of streptococcal proteinase. J. Exp. Med. 85:305-320, 1947.
Elliott, S. D. A proteolytic enzyme produced by group A streptococci with special reference to its effect on the type-specific M protein antigen. J. Exp. Med. 92:201-219, 1950.
Hauser, A. R., Stevens, D. L., Kaplan, E. L., and Schlievert, P. H. Molecular analyse of pyrogenic exotoxin from Streptococcus pyogenes isolates associated with toxic shock like syndrome. J. Clin. Microbiol. 29:1562-1567, 1991.
Herwald, H., Collin, M., Muller-Esterl, W., and Bjorck, L. Streptococcal cysteine protease releases kinins: a novel virulence mechanism. J. Exp. Med. 184: 665-673, 1996.
Higuchi, R., Kummel, B., and Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragements: study of protein and DNA interactions. Nucleic Acids Res. 16:7351-7367, 1988.
Holm, S. E., Norrby, A., Bergholm, A-M., and Norgren, M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166: 31-37, 1992.
Kapur, V., Topouzis, S., Majeasky, M.W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M., and Musser, J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346, 1993a.
Kapur, V., Majeasky, M. W., Li, L. L., Black, R. A., and Musser, J. M. Cleavage of interleukin 1 (IL-1) precursor to produce active IL-1 by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676-7680, 1993b.
Kapur, V., Maffei, J. T., Greer, R. S., Li, L. L., Adams, G. J., and Musser, J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1convertase) protests mice against challenge with heterologous group A strepthcocci. Microb. Pathog. 16:443-450, 1994.
Kuo, C-F., Wu, J-J., Lin, K-Y., Tsai, P-J., Lee, S-C., Jin, Y-T., Lei, H-Y., and Lin, Y-S. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935, 1998.
Kuo, C-F., Wu, J-J., Tsai, P-J., Kao, F-J., Lei, H-Y., Lin, M. T., and Lin, Y-S. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126-130, 1999.
Liu, T-Y. and Elliott, S. D. Streptococcal protease: the zymogen to enzyme transformation. J. Biol. Chem. 240: 1138-1142, 1965.
Musser, J.M., Hauser, A. R., Kim, M. H., Schlievert, P. M., Nelson, K., and Selander, R. K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression Proc. Natl. Acad. Sci. USA 88: 2668-2672, 1991.
Musser, J. M., Stockbauer, K., Kapur, V., and Rudgers, G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyrogenes extracellular cysteine protease (Interleukin 1 convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64: 1913-1917, 1996.
Musser , J. M. Streptococcal Superantigen, Mitogenic Factor, and Pyrogenic Exotoxin B Expressed by Streptococcus pyogenes Prep. Biochemistry & Biotechnology, 27(2&3), 143-172, 1997.
Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T., and Ota, M. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40: 930-936, 1994.
Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S., and Kehoe, M. A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63: 2776-2779, 1995.
Robinson, J. H. and Kehoe, M. A. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol. Today 13: 362-367, 1992.
Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Cpring Harbor Laboratory. Cold Spring Habor NY, 1989.
Shanley, T. P., Schrier, D., Kapur, V., Kehoe, M., Musser, J. M., and Ward, P. A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect. Immun. 64: 870-877, 1996.
Speziale, P., Hook, M., Switalski, L. M., and Wadstrom, T. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420-427, 1984.
Tai, J. Y., Kortt, A. A., Liu, T-Y., and Elliott, S. D. Primary structure of streptococcal protease. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251: 1955-1959, 1976.
Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., Storer, A. C., Thomas, D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 1991 Nov 15; 266 (32):21451-7. Webb, E. C. (Editor), 1992.
Wolf, B. B., Gibson, C. A., Kapur, V., Hussaini, I. M., Musser, J. M., and Gonias, S. L. Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell urokinase receptor and releases an active fragment of the receptor from the cell surface. J. Biol. Chem. 269: 30682-30687, 1994.
Yonaha, K., Elliott, S. D., and Liu, T-Y. Primary structure of zymogen of streptococcal protease. J. Protein Chem. 1: 317-334, 1982.
Yu, E-Y. and Ferreti, J. J. Frequency of the erythrogenic toxin B and C gene (speB and speC) among clinical isolates of group A streptococci. Infect. Immun. 59:211-215, 1991.
陳秋月 Expression and Characterization of Streptococcal Pyrogenic Exotoxin B 國立成功大學生物化學研究所碩士論文. 1999.
劉沛棻 3D solution structure of the DNA-binding domain of Interleukin enhancer binding factor by NMR 國立成功大學生物化學研究所碩士論文. 2001.