| 研究生: |
莊芷涵 Chuang, Chih-Han |
|---|---|
| 論文名稱: |
圓弧切削式梁柱接頭之震損修復技術開發與性能評估 Performance evaluation of a seismic repaired reduced-section beam-column connection |
| 指導教授: |
鍾育霖
Chung, Yu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 圓弧切削式梁柱接頭 、震後修復 、挫屈束制 、靜態反復加載實驗 |
| 外文關鍵詞: | Reduced beam section connection, Seismic repair, Buckling-restrained, Static cyclic loading test |
| 相關次數: | 點閱:44 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
北嶺地震後各國針對鋼結構接頭的耐震性能進行了許多相關研究,美國FEMA(FEMA,1995)透過有系統的調查及實驗研究,提出了鋼構接頭韌性不足的原因,並以標準的性能驗證方式,整合了數個耐震性能通過驗證的梁柱接頭,其中兼具高韌性及穩定消能能力且經濟性及施工性皆有一定水準的圓弧切削式梁柱接頭,成為普遍使用於鋼骨韌性抗彎結構系統中常見的梁柱接頭型式,臺灣國內也有不少中低樓層結構或是科技廠房等案例使用該類型的梁柱接頭。此類型的接頭是在接頭附近梁翼板透過切削減弱後,使其在此處性進入塑性領域進而產生塑性鉸消耗地震能量,而避免在接頭焊接區域出現高應力集中狀況,由於切削後翼板與腹板束制降低,因此易局部挫屈造成的鋼板扭曲,降低接頭強度,扭曲的鋼板使得挫屈後的剩餘強度較難預測,因此補強型修復有過度補強的疑慮,使該類型接頭震損後成接構修復的難題。又鋼結構接頭附近常出現裝修材或有水電、消防等管線經過,產生大量火花的乙炔切割、銲接鋼板等施作方式,增加了修復難度。在期望兼顧性能以及合理施工性的條件下,本研究希望透過在切削區域添加面外挫屈束制構件的震損修復技術,回復接頭原有的強度。
本研究製作兩座梁翼切削量不同的實尺寸 RBS 接頭試體,先透過靜態反覆加載評估其耐震性能,其後設計修復鋼構件並且將其安裝於震損試體上,再以相同靜態反覆加載歷程測試,透過強度、耗能能力以及應變集中狀態等面向評估此修復方式應用於 RBS 接頭之可行性。
由RBS震損與震後修復接頭靜態反復加載實驗,重點試驗結論如下:
1. 本試驗兩座切削量不同的圓弧切削型梁柱接頭,於震後修復試驗中皆在層間變位角4%兩迴圈後仍有震損試驗最大強度84%以上的強度,具有優良的韌性。
2. 本研究所提出的挫屈束制修復方式,有效約束挫屈段的持續變形,兩組切削量之震後修復接頭試體,韌性耗能能力回復達 9 成的比例, 可證本研究震後修復方式有效將震損 RBS 接頭回復至接近原來的韌性能力,且亦無過度補強的狀況。
3. 由梁翼極限切削接頭試體負彎矩強度提升較中等切削少且遲滯迴圈亦較不飽滿,得接頭的震損程度,即留有殘留變形量的幅度,將影響修復束制構件發揮的效能。
Reduced beam section connection (RBS) is the pre-qualified connection and has been used in many real cases including low-to-middle rise buildings or high-tech factories. The plastic behavior would occur at the reduced section of the connection instead of causing high strain concentration at the connection. A plastic hinge would be developed at reduced section area and lead to local bucking at a large deformation range. The connection could exhibit good ductility. However, the strength would deteriorate due to the local buckling. After the strong earthquake event, enhancement of the connection would be difficult due to the uncertainty of the residual strength and the deformed plates. In addition, the presents of the ceilings and various pipelines would increase the difficulty of the field cutting and welding works. This research proposes a weld-free repair method to enhance the local bucked RBS connection. A set of buckling-restraint components are added at the reduced section area to prevent the buckling of the web and flanges under the seismic loading. Two full-scale RBS specimens have been prepared and tasted static cyclic loading to evaluate the efficacy of this seismic repair method. As a result, the seismic-repaired specimens can sustain 4% drift deformation without strength deterioration. The maximum strength still had more than 84% of the original specimens. Moreover, the amount of flange reduction at RBS connection obviously affected the effectiveness of the seismic repair members; the greater amount of flange reduction, the worse the effectiveness been.
[1] Kuwamura, N. 1996, “Frature of Steel Welded Joints under Severe Earthquake Motion” ,11th World Conference on Earthquake Engineering.
[2] Youssef, N.F.G, Bonowitz, D., and Gross, J.L 1995, “A surrey of Steel Moment-Resisting Frame Buildings Affected by the 1994 Northridge Eearthquake” , Report NISTR5625, National Institute of Standards and Technoligy, Administration, United States Department of Commerce. Gaithersburg, Maryland.
[3] FEMA, “ FEMA-267 –Interim Guidelines: Evaluation, Repair, Modification andDesign of Steel Moment Frames”, Federal Emergency Management Agency,1995。
[2] 周作隆,「高韌性鋼骨梁柱接頭之設計」,碩士論文,國立臺灣工業技術學院,1995。
[3] 陳宣維,「鋼骨圓弧切削梁柱接頭之耐震行為研究」,碩士論文,國立交通大學,1999。
[4] 謝依平,「高層建築鋼結構韌性構架梁柱接頭之調查與研究」,碩士論文,國立成功大學,2012。
[5] FEMA, “ FEMA-350–Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings”,Federal Emergency Management Agency,2000A。
[6] FEMA, “ FEMA-351–Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings”, Federal Emergency Management Agency,2000B。
[7] 林克強、莊勝智、林志翰、李昭賢、林德宏,「預先驗證合格之鋼梁與箱型柱耐震抗彎接合」,土木水利 第四十二卷 第二期 第33-42頁,2015。
[8] 陳正平,「鋼梁翼板減弱式韌性梁柱接頭應用特例」,技師期刊第76期 第65-71頁,2017。
[9] Bertero VV, Anderson JC, Krawinkler H. ,“Performance of steel building structures during the northridge earthquake”, Earthquake Engineering Research Center, Report no. UCB/EERC-94-09,1994.
[10] Bertero VV, Xiao Y, “Seismological and engineering aspects of the January 17, 1995 Hyogoken-Nanbu (Kobe) Earthquake”, Earthquake Engineering Research Center. Report no. UCB/EERC-95-10,1995.
[11] Plumier, A., “The Dogbone: Back to the Future,” Engineering Journal, AmericanInstitute of Steel Construction, Vol. 34, No. 2, pp. 61-67,1997.
[12] Engelhardt, M.D., Winneberger, T, Zekany, A.J., and Potyraj, T.J. “Experimental investigation of dogbone moment connections,” Engineering Journal, American Institute of Steel Construction, Vol. 35, No. 4, pp. 128-139, 1998.
[13] 中華民國結構工程學會、中華民國地震工程學會、臺灣省結構工程技士公會、臺北市結構工程工業技師公會、國家地震工程研究中心,「鋼構造梁柱抗彎接合設計手冊與參考圖」,科技圖書,2013。
[14] 林克強、莊勝智、林志翰、李昭賢、林德宏 ,「鋼構造梁柱抗彎接合設計手冊與參考圖」,國家地震工程研究中心,研究報告 NCREE-17-003,2017 。
[15] AISC, “ Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications”, ANSI/AISC 358-10, American Institute of Steel Construction, 2010.
[16] AISC, “Specification for Structural Steel Buildings”, ANSI/AISC 360-10, American Institute of Steel Construction, 2010.
[17] AISC, “Seismic Provisions for Structural Steel Buildings”, ANSI/AISC 341-16, American Institute of Steel Construction, 2016.
[18] AISC, “Seismic Provisions for Structural Steel Buildings” , ANSI/AISC 341-10, American Institute of Steel Construction, 2010.
[19] FEMA, “Prestandard and commentary for the seismic rehabilitation of buildings” ,Report FEMA356,Federal Emergency Management Agency, Washington DC, USA, 2000.
[20] 內政部營建署,「鋼結構極限應力設計法規範及解說」,2010 。
[21] 廖文義,羅俊雄,洪思閩,鄧崇任,「鋼結構建築耐震評估、補強及修復準則之研擬」,內政部建築研究所委託研究報告,2003。
[22] Uang, C. N.,Q. S.YuandC. S. Gilton,“Effects of loading history on cyclic performance of steel RBS moment connections”, 12th World Conference on Earthquake Engineering, Paper No.1294, 2000.
[23] Chi, B., and C. M. Uang,“Cyclic response and design recommendations of reduced beam section moment connections with deep columns”, J. Structural Engineering, ASCE,Vol.128, pp.464-473, 2002.
[24] Scott L. Jones , Gary T. Fry, and Michael D. Engelhardt,“ Experimental Evaluation of Cyclically Loaded Reduced Beam Section Moment Connections”, Journal of Structural Engineering, ASCE, Vol. 128, No. 4,441-451, 2002.
[25] 陳誠直,陳宣維,鐘明達,「梁翼圓弧切削鋼骨梁柱接頭之耐震行為」,中國土木水利工程學刊,第十五卷,第一期,第219-224頁,2003。
[26] Deylami,A.,and A. M. Tabar,“Experimental study on the key issues affecting cyclic behaviour of reduced beam section moment connections”, 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[27] Kim, T., J. H. Park, and C. H. Lee,“Inelastic analysis of reduced beam section steel moment connections to built-up box columns”, 2005.
[28] Lee, C. H., and J. H.Kim,“Seismic design of reduced beam section steel moment connections with bolted web attachment”,J. Constructional Steel Research, Vol.63, pp.522~531, 2007.
[29] Lee, C. H.,S. W.Jeon, J. H. Kim, J. H. Kim, and C. M.Uang, “Seismic performance of reduced beam section steel moment connections: effects of panel zone strength and beam web connection method”13th World Conference on Earthquake Engineering, Paper No.3449, 2004.
[30] Deylami,A.,andA. M.Tabar,“Promotion of cyclic behavior of reduced beam section connections restraining beam web to local buckling”, Thin-Walled Structures,Vol.73, pp.112~120, 2013
[31] Chou, C. C., andC. M. Uang,“Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection”, J. Constructional Steel Research, Vol.58, pp.637-663, 2002.
[32] X. Li, Y. Xiao ,and Y.T. Wu, “Seismic behavior of exterior connections with steel beams bolted to CFT columns”, J. Constructional Steel Research,Vol.65, pp.1438~1446, 2009.
[33] 易楊翰,「鋼構斷面切削式柱樑接頭震後以挫曲束制方式補強之性能評估」,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所, 2017。
[34] Feng-Xiang Li, Iori Kanao., Jun Li, and Kiyotaka Morisako, “Local buckling of RBS beams subjected to cyclic loading”, Journal of Structural Engineering, Vol.135, pp.1491-1498, 2009.
[35] James M. Ricles, Xiaofeng Zhang, Le-Wu Lu, John Fisher, “ Development of Seismic Guidelines for Deep-Column Steel Moment Connections”, ATLSS , ATLSS Report No. 04-13,2004
[36] 蔡克銓,吳安傑,林保均,莊明介,「挫屈束制支撐構架設計概要與工程應用」, 結構工程 ,第三十卷 ,第一期,第 11‐33 頁,2015。
[37] 蔡克銓,吳安傑,林保均,「 挫屈束制支撐核心鋼板高模態挫屈行為研究」, 結構工程,第二十七卷 ,第一期,第 23‐42 頁,2013 。
[38] 蔡克銓,林保均,魏志毓,吳安傑,莊明介,「槽接式挫屈束制支撐與脫層材料性能研究」,結構工程,第二十七卷, 第三期,第29-59頁,2012 。
[39] T. Takeuchi, J.F.Hajjar, R. Matsui, K. Nishimoto, I.D. Aiken,“Local buckling restraint condition for core plates in buckling restrained braces”Journal of Constructional Steel Research 66, pp.139–149,2010.
[40] Pao-Chun Lin, Keh-Chyuan Tsai, Kung-Juin Wang, Yi-Jer Yu, Chih-Yu Wei, An-Chien Wu, Ching-Yi Tsai, Chih-Han Lin, Jia-Chian Chen,Andreas H. Schellenberg, Stephen A. Mahin ,Charles W. Roeder,“Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile” Earthquake Engineering And Structural Dynamics 41, pp.1001–1020,2012.