簡易檢索 / 詳目顯示

研究生: 曾俊硯
Tseng, Chun-Yen
論文名稱: 應用光電化學氧化法於砷化鎵太陽能電池之特性研究
Performance Improvement of GaAs Solar Cells Using Photoelectrochemical Oxidation Method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 50
中文關鍵詞: 光電化學氧化法砷化鎵太陽能電池
外文關鍵詞: photoelectrochemical oxidation method, GaAs solar cell
相關次數: 點閱:108下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要之研究目的為利用光電化學氧化法針對太陽電池窗層(AlGaAs)表面進行護佈處理,此護佈方式之優點為採用自身氧化法來降低窗層與氧化層間之表面態密度以減少載子表面複合機率,並修補元件漏電路徑進而增加太陽電池轉換效率。
    本研究針對砷化鎵太陽能電池(GaAs single-junction solar cell)之窗層表面處理前後,元件轉換效率、電流-電壓特性曲線及表面態密度進行探討。藉由光電化學氧化法成長氧化層方式其表面之懸浮鍵將會與氧形成鍵結,進而減少表面態密度及降低表面復合速率,使元件漏電流降低,整體光電流提昇。另一方面,將藉由電子束蒸鍍系統成長雙層抗反射層(double anti-reflection coating)以減少入射太陽光反射之損耗,進而提高太陽能電池元件之轉換效率。應用光電化學氧化法可將砷化鎵太陽能電池之光電轉換效率提升至15.7 %。

    The purpose of this research is to investigate the passivation mechanism of the window layer (AlGaAs) of GaAs solar cell by using photoelectrochemical oxidation method (PEC). The advantage of this passivation method is using its self-oxidation material to reduce the energy loss from the surface states on the window layer.
    The conversion efficiency of the GaAs solar cell with and without photoelectrochemical oxide treatment would be investigated. The conversion efficiency can be improved due to the reduction of surface state densities. Furthermore, in order to reduce the losses from the solar reflection, double anti-reflection coating was fabricated by electron-beam deposition system. In our research, the conversion efficiency was improved to 15.7% by using the photoelectrochemical oxidation method.

    Abstract (in Chinese)..................................I Abstract (in English)..................................II Acknowledgements.......................................III Contents...............................................V Table Captions.........................................VIII Figure Captions........................................IX Chapter 1 Introduction..................................1 References..............................................4 Chapter 2 Basic theories of the Solar Cell..............6 2-1 Basic principle of solar cell.......................6 2-2 The equivalent circuit analysis of the solar cell...6 2-3 Transmission-line model, TLM........................10 2-4 Photoelectrochemical(PEC) oxidation method..........11 2-5 The rule of vector for anti-reflection coating......13 References..............................................15 Chapter 3 Experimental Procedures.......................23 3-1 Fabrication of TLM devices..........................23 3-1-1 The ohmic contact of AuGeNi/Au on n-type GaAs.....23 3-2 Fabrication of anti-reflection coatings(ARC)........26 3-2-1 TiO2/SiO2 double-layer ARC 26 3-3Fabrication of solar cell devices....................27 3-3-1 Mesh electrode on GaAs solar cell.................27 Chapter 4 Results and Discussion........................35 4-1 Analysis and measurement of electrical properties of (AuGeNi/Au)/GaAs.....................................35 4-1-1 Electrical properties of (AuGeNi/Au)/GaAs.........35 4-2 Analysis and measurement of the mesh electrode on GaAs solar cell devices with and without PEC oxidation treatment...........................................36 4-2-1 Comparison of dark current density-voltage properties of GaAs solar cell with and without PEC oxidation method treatment....................................36 4-2-2 Comparison of illuminated current density-voltage properties of GaAs solar cell with and without PEC oxide method treatment..............................37 4.3 Investigation of the anti-reflection coating (ARC) of GaAs solar cell devices.............................39 4-3-1 Optical properties of double-layer ARC............39 References..............................................41 Chapter 5 Conclusion....................................50

    Chapter 1
    [1] Y. Mols, M. R. Leys, E. Simons, J. Poortmans and G. Borghs, “Study of intrinsically carbon"doped AlGaAs layers for tunnel diodes in multi"junction solar cells”, J. Cryst. Growth, 298, 758 (2007).
    [2] A. W. Blakers, A. Wang, A. M. Miline, J. Zhao, and M. A. Green, “22.8% efficiency silicon solar cell”, Appl. Phys. Lett., 55, 1363 (1989).
    [3] M. Yamaguchi, K. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto and T. Takamoto, “Novel materials for high"efficiency III–V multi"junction solar cells” Sol. Energy, 82, 173 (2008).
    [4] I. R. Stolle, I. Garcia, B. Galiana and C. Algora, “Improvements in the MOVPE growth of multi"junction solar cells for very high concentration” J. Cryst. Growth, 298, 762 (2007).
    [5] A. Poruba, J. Springer, L. Mullerova and A. Beitlerova, “Temperature dependence of the optical absorption coefficient of microcrystalline silicon”, J. Non"Cryst. Solids, 222, 338 (2004).
    [6] T. Takamoto, M. Yamaguchi and S. J. Taylor, “Radiation resistance of high"efficiency InGaP/GaAs tandem solar cells”, Sol. Energ. Mat. Sol. Cells, 58, 265 (1999).
    [7] M. Yamaguchi, “III–V compound multi"junction solar cells: present and future”, Sol. Energ. Mat. Sol. Cells, 75, 261 (2003).
    [8] L. W. Lai, J. T. Chen, L. R. Lou, C. H. Wu and C. T. Lee,“Performance Improvement of (NH4)2Sx"Treated III"V Compounds Multijunction Solar Cell Using Surface Treatment” J. Electrochem. Soc, 155, B1270 (2008).
    [9] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs hterostructure bipolar transistor by surface chemical passivation”Appl. Phys. Lett., 51, 33 (1987).
    [10] P. S. Chen, T. H. Lee, L. W. Lai and C. T. Lee, “Schottky Mechanism for Ni/Au Contact with Chlorine"Treated N"type GaN Layer” J. Appl. Phys. 101, 024507 (2007).
    [11] C. T. Lee, H. Y. Lee and H. W. Chen, “GaN MOS Device Using SiO2–Ga2O3 Insulator Grown by Photoelectrochemical Oxidation Method” J. Appl. Phys. 101, 024507 (2007).
    Chapter 2
    [1] S. M. Sze, “Semiconductor Devices Physics and Technology” (2003).
    [2] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ"Ⅴ solar cell performance M. S. Thesis”, CYCU, Taiwan, R.O.C. (2005).
    [3] 莊家琛, “太陽能工程"太陽能電池篇”, 全華出版社 (2005).
    [4] M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report (1970).
    [5] D. A. Neamen, “Semiconductor Physics and Devices” (2003).
    [6] G. K. Reeves and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements” IEEE Electron Device Lett., 3, 111 (1982).
    [7] 高孝維, 國立中央大學光電科學研究所碩士論文 (1999).
    [8] H. O. Finkiea, Semiconductor Electrodes, Elsevier Science, The Netherlands (1988).
    [9] R. Khare, D. B. Young, G. L. Snider and E. L. Hu, “Effect of band structure on etch"stop layers in the photoelectrochemical etching of GaAs/AlGaAs semiconductor structures”, Appl. Phys. Lett., 62, 1809 (1993).
    [10] E. H. Chen, D. T. McInturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low"temperature grown GaAs as a selective photoetch"stop layer”, Appl. Phys. Lett., 68, 1678 (1996).
    [11] T. H. Oh, D. L. Huffaker, L. A. Graham, H. Deng and D. G. Deppe, “Steam oxidation of GaAs”. Electron. Lett., 32, 2024 (1996).
    [12] H. J. Yoon, M. H. Choi and I. S. Park, “The study of native oxide on chemically etched GaAs (100) surfaces”, J. Electrochem. Soc., 139, 3229 (1992).
    [13] 李正中, 薄膜光學與鍍膜技術, 藝軒出版社 (2002).
    Chapter 4
    [1] S. Omae, T. Minemoto, M. Murozono, H. Takakura and Y. Hamakawa, “Effects of Hydrogen Passivation for Spherical Silicon Solar Cells Fabricated by Dropping Method” Jpn. J. Appl. Phys., 45 1515 (2006).

    下載圖示 校內:2010-06-29公開
    校外:2010-06-29公開
    QR CODE